Основные условия получения дисперсных систем. Методы получения дисперсных систем дисперсные системы

Методы получения дисперсных систем делятся на две принципиально различающиеся группы: диспергационные и конденсационные.

Диспергирование

Получение дисперсных систем методом диспергирования связано с дроблением и измельчением веществ. Диспергирование может осуществляться механическими, электрическими, химическими (пептизация) и ультразвуковыми способами.

Механическое диспергирование веществ постоянно происходит в природе - выветривание горных пород, образование ледников и другие процессы. Большое значение механическое диспергирование имеет в промышленных процессах - обогащении руд, металлургическом производстве при образовании шлаков, в нефтепереработке, строительстве, медицине, фармацевтике. При этом используют различные типы и конструкции мельниц, обеспечивающие получение нужной степени размола. Так, шаровые мельницы обеспечивают получение частиц грубого размола (~ 10 4 м); в коллоидных мельницах получаются частицы более тонкого размола, например, при дроблении сахара, кофе, крахмала, графита, химических реактивов используют коллоидные мельницы для получения высокой степени дисперсности вещества.

Диспергирование начинается с дробления, измельчение вещества является следующей стадией. Работа W , затрачиваемая на диспергирование вещества, по уравнению Ребиндера состоит из двух слагаемых:

где W^ - работа, затрачиваемая на дробление; - работа, затрачиваемая на измельчение вещества; А К и As - изменение объема системы и поверхности дисперсных частиц в ней; и - коэффициенты пропорциональности.

Если объем тела пропорционален кубу линейного размера, а площадь - его квадрату, то уравнение Ребиндера можно переписать как соотношение

где /Г и - коэффициенты пропорциональности.

Для первой стадии диспергирования важно первое слагаемое К.а *,

так как работа, затрачиваемая на деформацию и дробление, связана с размерами исходных кусков вещества (как правило, крупных и с небольшой поверхностью) и их механической прочностью. На второй стадии диспергирования работа пропорциональна величине образующейся поверхности. При больших размерах частиц можно пренебречь работой образования поверхности и, наоборот, при малых размерах - работой объемного деформирования.

Если в целом коэффициенты пропорциональности К^ и К 2 зависят

от природы вещества, среды, метода дробления, то во втором слагаемом коэффициент /С, принимает на себя функцию энергии образования единицы поверхности, то есть поверхностного натяжения: к^ = К^ с5.

При дроблении и измельчении разрушение тел идет но местам прочностных дефектов - микро грещинам, которые имеются в слабых местах кристаллической решетки, при этом прочность частиц возрастает, что используется для получения более прочных материалов.

Для облегчения диспергирования материалов и снижения энергозатрат обычно используют специальные добавки, называемые понизителями прочности. Обычно добавление понизителей прочности в количестве -0,1% от массы измельчаемых веществ снижает энергозатраты на получение дисперсных систем примерно вдвое. Эффект снижения прочности твердых тел в присутствии понизителей прочности называется эффектом

Ребиндера. Он основан на том, что развитие микротрещин под действием силы идет легче при адсорбции различных веществ из среды, то есть сама по себе среда не разрушает поверхность тел, а лишь помогает разрушению. Действие добавок, представляющих из себя чаще всего поверхностноактивные вещества (ПАВ), сводится, прежде всего, к снижению поверхностного натяжения и уменьшению работы измельчения. Кроме того, добавки, смачивая материал, помогают среде проникнуть в места дефектов твердого тела и с помощью капиллярных сил облегчают его разрушение. Эффект Ребиндера широко используется в промышленности. Например, измельчение руды всегда проводят в водной среде в присутствии ПАВ; качество обработки деталей на станках в присутствии эмульсии ПАВ резко повышается, увеличивается срок службы металлорежущего инструмента и снижаются энергозатраты на проведение процесса.

Диспергирование широко используется при получении эмульсий - дисперсных систем, в которых одна жидкость диспергирована в другой жидкости, то есть обе фазы являются жидкими (Ж/Ж). Необходимым условием образования эмульсий является полная или частичная нерастворимость дисперсной фазы в дисперсионной среде. Поэтому жидкие вещества, образующие эмульсию, должны различаться по полярности. Обычно вода (полярная фаза) является составляющей частью эмульсий. Вторая фаза должна быть неполярной или малорастворимой жидкостью, называемой вне зависимости от состава маслом (бензол, толуол, растительные и минеральные масла).

Эмульсии делятся на два типа: прямыми называются эмульсии М/В (дисперсная фаза - масло, дисперсионная среда - вода); обратными (ин- вертными) - эмульсии В/М (дисперсии воды в масле). Примером эмульсий I типа могут служить эмульсии, образующиеся при конденсации отработанного пара в двигателе, пищевые эмульсии (молоко, сливки); типичная эмульсия II типа - сырая нефть, в которой содержится до 50% солевых растворов. Сырая нефть представляет собой эмульсию В/М, стабилизованную маслорастворимыми ПАВ (парафинами, асфальтенами). В качестве примера пищевых обратных эмульсий можно привести маргарины или сливочное масло. Тип эмульсии определяется объемным соотношением фаз: дисперсной фазой является та жидкость, которая находится в меньшем количестве. Определить тип можно по способности смешиваться с полярными и неполярными растворителями или растворять полярные или неполярные красители, а также но электрической проводимости (для водной дисперсионной среды электрическая проводимость на несколько порядков выше, чем для неводной).

Эмульсии имеют широкое распространение в природе и различных технологических процессах. Большую роль играют эмульсии в жизнедеятельности человека, например, кровь представляет эмульсию, в которой дисперсной фазой являются эритроциты.

Однотипность агрегатного состояния двух смежных фаз определяет особенности устойчивости эмульсий. Седиментационная устойчивость эмульсий достаточно велика и тем больше, чем меньше разница в плотностях дисперсной фазы и дисперсионной среды. На процесс седиментации в эмульсиях может накладываться процесс флокуляции (агрегации), приводящий к укрупнению частиц и, следовательно, к увеличению скорости их оседания (или всплывания).

Агрегативная устойчивость эмульсий, как и всех дисперсных систем, определяется их лиофильностью или лиофобноегью. Большинство эмульсий относится к лиофобным системам. Они термодинамически неустойчивы и нс могут образовываться самопроизвольно из-за наличия избытка свободной энергии на межфазной поверхности. Эта неустойчивость проявляется в самопроизвольном слиянии капель жидкости друг с другом (коа- лесценции), что может привести к полному разрушению эмульсии и разделению ее на два слоя. Агрегативная устойчивость таких эмульсий возможна лишь в присутствии стабилизатора, препятствующего слиянию частиц. Стабилизатором может быть компонент системы, находящийся в ней в избытке, или вещество, специально вводимое в систему, в этом случае стабилизатор называют эмульгатором. В качестве эмульгаторов обычно используются поверхностно-активные или высокомолекулярные вещества. Эмульгаторы могут быть гидрофильными и гидрофобными. Наиболее распространенными гидрофильными эмульгаторами являются натриевые (калиевые) соли жирных кислот, которые лучше растворяются в воде, чем в углеводородах. Они способны стабилизировать прямую эмульсию типа М/В. Ориентация адсорбционного слоя ПАВ происходит в соответствии с правилом Ребиндера: неполярный радикал обращен к неполярной жидкости, а полярная группа - к полярной. В эмульсиях прямого типа полярные части эмульгатора располагаются на наружной стороне капель масла и препятствуют их сближению. Эти же вещества в эмульсиях обратного типа адсорбируются полярными группами на внутренней поверхности капель воды и не мешают их слиянию (рис. 1.3).

Рис. 1.3. Расположение гидрофильного эмульгатора в прямых (а) и обратных (6 ) эмульсиях

В определенных условиях возможно явление, которое называется инверсией - обращением фаз эмульсии (или просто обращением эмульсии), когда при изменении условий или введения каких-либо реагентов, эмульсия данного типа превращается в эмульсию противоположного типа.

Введение…………………………………………………………стр. 3

Основная часть

1. Получение дисперсных систем………………………………стр. 5

1.1. Диспергационные методы………………………………..стр. 5

1.2. Конденсационные методы………………………………..стр. 7

2. Очистка дисперсных систем………………………………..стр. 10

Приложение………………………………………………………стр. 12

Список использованной литературы……………………………стр.13

Введение

В коллоидной химии широко используются многие понятия из курса физической химии, в том числе фаза, гомогенная и гетерогенная системы.

Фаза – часть системы одного состава, одинаковых физических свойств, ограниченная от других частей поверхностью раздела. Систему, состоящую из одной фазы, называют гомогенной. Гетерогенная система состоит из двух и более фаз. Гетерогенную систему, в которой одна из фаз представлена в виде частиц микроскопических размеров, называют микрогетерогенной. Гетерогенная система может содержать частицы значительно меньших размеров в сравнении с видимыми в оптический микроскоп. Такие частицы наблюдают с помощью ультрамикроскопа. Систему, содержащую столь малые частицы, называют ультрамикрогетерогенной . По предложению Оствальда и Веймарна, фазу, входящую в микрогетерогенную и ультрамикрогетерогенную систему в виде мелких частиц, называют дисперсной .

Микрогетерогенные и ультрамикрогетерогенные системы – представители особого класса гетерогенных систем, называемых дисперсными системами .

Коллоидная химия – это наука о свойствах гетерогенных высокодисперсных систем и о протекающих в них процессах.

Обладая избытком свободной энергии, типичные высокодисперсные системы являются термодинамически неустойчивыми. Для них характерны самопроизвольные процессы, снижающие указанный избыток путем уменьшения дисперсности. При этом система, оставаясь неизменной по своему химическому составу, изменяет энергетические характеристики, а следовательно, и коллоидно-химические свойства. В рассматриваемых процессах, в отличие от химических, система проявляет неустойчивость, изменчивость, высокую лабильность, оставаясь в то же время «сама собой» (сохраняя состав).

Все эти особенности – невоспроизводимость, структурообразование и лабильность – имеют огромное значение в процессе эволюции материи к наиболее высокоорганизованной ее форме – жизни. Потенциальные возможности жизненных процессов уже заключены, как в зародыше, в дисперсных системах, из которых построено живое вещество. Коллоидный уровень материи, надмолекулярный или высокомолекулярный, соответствующий «молекулярному уровню» в биологии, является необходимым и неизбежным звеном в процессе эволюции.

Комплексные биологические проблемы, доминирующие в настоящее время в естествознании, решаются в значительной степени на основе физической химии дисперсных систем. Поэтому изучение коллоидной химии приобретает особенно важное и принципиальное значение для развития науки в настоящем и будущем.

В данной работе рассматриваются основные способы получения и очистки дисперсных систем, которые классифицируют как золи с жидкой дисперсионной средой и твердой дисперсной фазой (золь [нем. Sole от solutio (лат.) ] - коллоидный раствор). По размеру частиц золи относят к коллоидно – дисперсному типу систем (10 -7 – 10 -9 м).

Получение материалов с необходимыми свойствами во многих случаях включение в качестве технологических процессов образование (диспергационное или конденсационное) частиц дисперсной фазы и их коагуляцию в жидкой дисперсионной среде. С другой стороны, коагуляция и осаждение взвесей являются одним из этапов процессов водоочистки. Это относится не только к вредным бытовым взвесям и отходам различных технологических процессов, но и к специально получаемым золям гидроксидов металлов, которые вводят в воду для улавливания примесей ПАВ и ионов тяжелых металлов. Методы управления этими процессами основаны на применении общих закономерностей образования и разрушения дисперсных систем в сочетании с изучением их специфических свойств, в особенности способности к формированию пространственных дисперсных структур с характерными механическими свойствами. Эти коллоидно – химические явления лежат в основе многих геологических процессов, например, ведущих к формированию почвенного слоя, явившегося основой развития жизни на поверхности Земли.

Основная часть

1.Получение дисперсных систем.

Известны два способа получения дисперсных систем. В одном из них тонко измельчают (диспергируют) твердые и жидкие вещества в соответствующей дисперсионной среде, в другом вызывают образование частиц дисперсионной фазы из отдельных молекул или ионов.

Методы получения дисперсных систем измельчением более крупных частиц называют диспергационными. Методы, основанные на образовании частиц в результате кристаллизации или конденсации, называют конденсационными.

1.1.Диспергационные методы.

Эта группа методов объединяет прежде всего механические способы, в которых преодоление межмолекулярных сил и накопление свободной поверхностной энергии в процессе диспергирования происходит за счет внешней механической работы над системой. В результате твердые тела раздавливаются, истираются, дробятся или расщепляются, причем характерно это не только для лабораторных или промышленных условий, но и для процессов диспергирования, происходящих в природе (результат дробления и истирания твердых пород пол действием сил прибоя, приливно-отливные явления, процессы выветривания и выщелачивания и т.д.).

В лабораторных и промышленных условиях рассматриваемые процессы проводят в дробилках, жерновах и мельницах различной конструкции. Наиболее распространены шаровые мельницы. Это полые вращающиеся цилиндры, в которые загружают измельчаемый материал и стальные или керамические шары. При вращении цилиндра шары перекатываются, истирая измельчаемый материал. Измельчение может происходить и в результате ударов шаров. В шаровых мельницах получают системы, размеры частиц которых находятся в довольно широких пределах: от 2 – 3 до 50 – 70 мкм. Полый цилиндр с шарами можно приводить в круговое колебательное движение, что способствует интенсивному дроблению загруженного материала под действием сложного движения измельчающих тел. Такое устройство называется вибрационной мельницей.

Более тонкого диспергирования добиваются в коллоидных мельницах различных конструкций, принцип действия которых основан на развитии разрывающих усилий в суспензии или эмульсии под действием центробежной силы в узком зазоре между вращающимся с большой скоростью ротором и неподвижной частью устройства – статором. Взвешенные крупные частицы испытывают при этом значительное разрывающее усилие и таким образом диспергируются. Тип коллоидной мельницы, широко распространенный в настоящее время, изображен на рис. 1 (смотри приложение). Эта мельница состоит из ротора, представляющего конический диск 1, сидящий на валу 2, и статора 3. Ротор приводится во вращение с помощью специального расположенного вертикально мотора, совершающего обычно около 9000 об/мин. Рабочие поверхности ротора и статора 4 пришлифованы друг к другу и толщина щели между ними составляет около 0,05 мм. Грубая суспензия полается в мельницу по трубе 5 под вращающийся диск центробежной силой, развивающейся в результате вращений ротора, проталкивается через щель и затем удаляется из мельницы через трубу 6. При прохождении жидкости в виде тонкой пленки через щель взвешенные в жидкости частицы испытывают значительные сдвиговые усилия и измельчаются. Степень дисперсности полученной системы зависит от толщины щели и скорости вращения ротора: чем меньше зазор и больше скорость, тем больше сдвиговое усилие и следовательно, выше будет дисперсность.

Высокой дисперсности можно достичь ультразвуковым диспергированием . Диспергируещее действие ультразвука связано с кавитацией – образованием и захлопыванием полостей в жидкости. Захлопывание полостей сопровождается появлением кавитационных ударных волн, которые и разрушают материал. Экспериментально установлено, что дисперсность находится в прямой зависимости от частоты ультразвуковых колебаний. Особенно эффективно ультразвуковое диспергирование, если материал предварительно подвергнут тонкому измельчению. Эмульсии, полученные ультразвуковым методом, отличаются однородностью размеров частиц дисперсной фазы.

К диспергационным методам получения золей можно отнести метод Бредига , который основан на образовании вольтовой дуги между электродами из диспергируемого металла, помещенными в воду. Сущность метода заключается в распылении металла электрода в дуге, а также в конденсации паров металла, образующихся при высокой температуре. Поэтому электрический способ соединяет в себе черты диспергационных и конденсационных методов. Метод электрораспыления был предложен Бредигом в 1898 г. Бредиг включал в цепь постоянного тока силой 5-10 А и напряжением 30-110 В амперметр, реостат и два электрода из диспергируемого металла. Электроды он погружал в сосуд с водой, охлаждаемый снаружи льдом. Схематическое устройство прибора, которым пользовался Бредиг, показано на рис. 2 (смотри приложение). При прохождении тока через электроды между ними под водой возникает вольтова дуга. При этом у электродов образуется облачко высокодисперсного металла. Для получения более стойкий золей в воду, в которую погружены электроды, целесообразно вводить следы стабилизирующих электролитов, например гидроокисей щелочных металлов.

Более общее значение имеет способ Сведберга, в котором используется колебательный разряд высокого напряжения, приводящий к проскакиванию искры между электродами. Этим способом можно получать не только гидрозоли, но и органозоли различных металлов.

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что обычно используют для создания более прочных материалов. В то же время увеличение прочности материалов по мере их измельчения ведет к большому расходу энергии на дальнейшее диспергирование. Разрушение материалов может быть облегчено при использовании эффекта Ребиндера – адсорбционного понижения прочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно- активных веществ (ПАВ), в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких ПАВ, называемых в данном случае понизителями твердости , могут быть использованы, например, жидкие металлы для разрушения твердых металлов, органические вещества для уменьшения прочности органических монокристаллов. Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. ПАВ не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, так как, покрывая поверхность частиц, они тем самым препятствуют обратному слипанию их или слиянию (для жидкостей). Это также способствует достижению высокодисперсного состояния.

Применением диспергационных методов достичь весьма высокой дисперсности обычно не удается. Системы с размерами частиц порядка 10 -6 – 10 -7 см получают конденсационными методами.

1.2. Конденсационные методы.

В основе конденсационных методов лежат процессы возникновения новой фазы путем соединения молекул, ионов или атомов в гомогенной среде. Эти методы можно подразделить на физические и химические.

Физическая конденсация. Важнейшие физические методы получения дисперсных систем – конденсация из паров и замена растворителя. Наиболее наглядным примером конденсации из паров является образование тумана. При изменении параметров системы, в частности при понижении температуры, давление пара может стать выше равновесного давления пара над жидкостью (или над твердым телом) и в газовой фазе возникает новая жидкая (твердая) фаза. В результате система становится гетерогенной – начинает образовываться туман (дым). Таким путем получают, например, маскировочные аэрозоли, образующиеся при охлаждении паров P 2 O 5 , ZnO и других веществ. Лиозоли получаются в процессе совместной конденсации паров веществ, образующих дисперсную фазу и дисперсионную среду на охлажденной поверхности.

Широко применяют метод замены растворителя, основанный, как и предыдущий, на таком изменении параметров системы, при котором химический потенциал компонента в дисперсионной среде становится выше равновесного и тенденция к переходу в равновесное состояние приводит к образованию новой фазы. В отличие от метода конденсации паров (изменение температуры), в методе замены растворителя изменяют состав среды. Так, если насыщенный молекулярный раствор серы в этиловом спирте влить в большой объем воды, то полученный раствор в спирто-водной смеси оказывается уже пересыщенным. Пересыщение приведет к агрегированию молекул серы с образованием частиц новой фазы – дисперсной.

Методом замены растворителя получают золи серы, фосфора, мышьяка, канифоли, ацетилцеллюлозы и многих органических веществ, вливая спиртовые или ацетоновые растворы этих веществ в воду.

Химическая конденсация . Эти методы также основаны на конденсационном выделении новой фазы из пересыщенного раствора. Однако в отличии от физических методов, вещество, образующее дисперсную фазу, появляется в результате химической реакции. Таким образом, любая химическая реакция, идущая с образованием новой фазы, может быть источником получения коллоидной системы. В качестве примеров приведем следующие химические процессы.

1.Восстановление. Классический пример этого метода – получение золя золота восстановлением золотохлористоводородной кислоты. В качестве восстановителя можно применять пероксид водорода (метод Зигмонди) :

2HauCl 2 +3H 2 O 2 ®2Au+8HCl+3O 2

Известны и другие восстановители: фосфор (М. Фарадей), таннин (В. Освальд), формальдегид (Р.Жигмонди). Например,

2KauO 2 +3HCHO+K 2 CO 3 =2Au+3HCOOK+KHCO 3 +H 2 O

2.Окисление. Окислительные реакции широко распространены в природе. Это связано с тем, что при подъеме магматических расплавов и отделяющихся от них газов, флюидных фаз и подземных вод все подвижные фазы проходят из зоны восстановительных процессов на большой глубине к зонам окислительных реакций вблизи поверхности. Иллюстрацией такого рода процессов является образование золя серы в гидротермальных водах, с окислителями (сернистым газом или кислородом):

2H 2 S+O 2 =2S+2H 2 O

Другим примером может служить процесс окисления и гидролиза гидрокарбоната железа:

4Fe(HCO 3) 2 +O 2 +2H 2 O®4Fe(OH) 3 +8CO 2

Получающийся золь гидроокиси железа сообщает красно-коричневую окраску природным водам и является источником ржаво-бурых зон отложений в нижних слоях почвы.

3. Гидролиз. Широкое распространение в природе и важное значение в технике имеет образование гидрозолей в процессах гидролиза солей. Процессы гидролиза солей применяют для очистки сточных вод (гидроксид алюминия, получаемый гидролизом сульфата алюминия). Высокая удельная поверхность образующихся при гидролизе коллоидных гидроксидов позволяет эффективно адсорбировать примеси – молекулы ПАВ и ионы тяжелых металлов.

4. Реакции обмена. Этот метод наиболее часто встречается на практике. Например, получение золя сульфида мышьяка:

2H 3 AsO 3 +3H 2 S®As 2 S 3 +6H 2 O,

получение золя йодида серебра:

AgNO 3 +KI®AgI+KNO 3

Интересно, что реакции обмена дают возможность получать золи в органических растворителях. В частности, хорошо изучена реакция

Hg(CN) 2 +H 2 S®HgS+2HCN

Ее проводят, растворяя Hg(CN) 2 в метиловом, этиловом или пропиловом спирте и пропуская через раствор сероводород.

Хорошо известные в аналитической химии реакции, как, например, получение осадков сульфата бария или хлорида серебра

Na 2 SO 4 + BaCl 2 ® BaSO 4 + 2NaCl

AgNO 3 + NaCl ® AgCl + NaNO 3

в определенных условиях приводят к получению почти прозрачных, слегка мутноватых золей, из которых в дальнейшем могут выпадать осадки.

Таким образом, для конденсационного получения золей необходимо, чтобы концентрация вещества в растворе превышала растворимость, т.е. раствор должен быть пересыщенным. Эти условия являются общими как для образования высокодисперсного золя, так и обычного осадка твердой фазы. Однако, в первом случае требуется соблюдение особых условий, которые, согласно теории, разработанной Веймарном, заключается в одновременности возникновения огромного числа зародышей дисперсной фазы. Под зародышем следует понимать минимальное скопление новой фазы, находящееся в равновесии с окружающей средой. Для получения высокодисперсной системы необходимо, чтобы скорость образования зародышей была намного больше, чем скорость роста кристаллов. Практически это достигается путем вливания концентрированного раствора одного компонента в очень разбавленный раствор другого при сильном перемешивании.

Золи образуются легче, если в процессе их получения в растворы вводят специальные соединения, называемые защитными веществами, или стабилизаторами. В качестве защитных веществ при получении гидрозолей применяют мыла, белки и другие соединения. Стабилизаторы используют и при получении органозолей.

2. Очистка дисперсных систем.

Золи и растворы высокомолекулярных соединений (ВМС) содержат в виде нежелательных примесей низкомолекулярные соединения. Их удаляют следующими методами.

Диализ. Диализ был исторически первым методом очистки. Его предложил Т. Грэм (1861). Схема простейшего диализатора показана на рис. 3 (смотри приложение). Очищаемый золь, или раствор ВМС, заливают в сосуд, дном которого служит мембрана, задерживающая коллоидные частицы или макромолекулы и пропускающая молекулы растворителя и низкомолекулярные примеси. Внешней средой, контактирующей с мембраной, является растворитель. Низкомолекулярные примеси, концентрация которых в золе или макромолекулярном растворе выше, переходят сквозь мембрану во внешнюю среду (диализат). На рисунке направление потока низкомолекулярных примесей показано стрелками. Очистка идет до тех пор, пока концентрации примесей в золе и диализате не станут близкими по величине (точнее, пока не выравняются химические потенциалы в золе и диализате). Если обновлять растворитель, то можно практически полностью избавиться от примесей. Такое использование диализа целесообразно, когда цель очистки – удаление всех низкомолекулярных веществ, проходящих сквозь мембрану. Однако в ряде случаев задача может оказаться сложнее – необходимо освободиться только от определенной части низкомолекулярных соединений в системе. Тогда в качестве внешней среды применяют раствор тех веществ, которые необходимо сохранить в системе. Именно такая задача ставится при очистке крови от низкомолекулярных шлаков и токсинов (солей, мочевины и т.п.).

Ультрафильтрация. Ультрафильтрация – метод очистки путем продавливания дисперсионной среды вместе с низкомолекулярными примесями через ультрафильтры. Ультрафильтрами служат мембраны того же типа, что и для диализа.

Простейшая установка для очистки ультрафильтрацией показана на рис. 4 (смотри приложение). В мешочек из ультрафильтра наливают очищаемый золь или раствор ВМС. К золю прилагают избыточное по сравнению с атмосферным давление. Его можно создать либо с помощью внешнего источника (баллон со сжатым воздухом, компрессор и т. п.), либо большим столбом жидкости. Дисперсионную среду обновляют, добавляя к золю чистый растворитель. Чтобы скорость очистки была достаточно высокой, обновление проводят по возможности быстро. Это достигается применением значительных избыточных давлений. Чтобы мембрана могла выдержать такие нагрузки, ее наносят на механическую опору. Такой опорой служат сетки и пластинки с отверстиями, стеклянные и керамические фильтры.

Микрофильтрация. Микрофильтрацией называется отделение с помощью фильтров микрочастиц размером от 0,1 до 10 мкм. Производительность микрофильтрата определяется пористостью и толщиной мембраны. Для оценки пористости, т. е. отношения площади пор к общей площади фильтра, используют разнообразные методы: продавливание жидкостей и газов, измерение электрической проводимости мембран, продавливание систем, содержащих калиброванные частицы дисперсионной фазы, и пр.

Микропористые фильтры изготовляют из неорганических веществ и полимеров. Спеканием порошков можно получить мембраны из фарфора, металлов и сплавов. Полимерные мембраны для микрофильтрования чаще всего изготовляют из целлюлозы и ее производных.

Электродиализ. Очистку от электролитов можно ускорить, применяя налагаемую извне разность потенциалов. Такой метод очистки называется электродиализом. Его использование для очистки различных систем с биологическими объектами (растворы белков, сыворотка крови и пр.) началось в результате успешных работ Доре (1910). Устройство простейшего электродиализатора показано на рис. 5(смотри приложение). Очищаемый объект (золь, раствор ВМС) помещают в среднюю камеру 1, а в две боковые камеры наливают среду. В катодную 3 и анодную 5 камеры ионы проходят сквозь поры в мембранах под действием приложенного электрического напряжения.

Электродиализом наиболее целесообразно очищать тогда, когда можно применять высокие электрические напряжения. В большинстве случаев на начальной стадии очистки системы содержат много растворенных солей, и их электрическая проводимость высока. Поэтому при высоком напряжении может выделяться значительное количество теплоты, и в системах с белками или другими биологическими компонентами могут произойти необратимые изменения. Следовательно, электродиализ рационально использовать как завершающий метод очистки, применив предварительно диализ.

Комбинированные методы очистки. Помимо индивидуальных методов очистки – ультрафильтрации и электродиализа – известна их комбинация: электроультрафильтрация, применяемая для очистки и разделения белков.

Очистить и одновременно повысить концентрацию золя или раствора ВМС можно с помощью метода, называемого электродекантацией. Метод предложен В. Паули. Электродекантация происходит при работе электродиализатора без перемешивания. Частицы золя или макромолекулы обладают собственным зарядом и под действием электрического поля перемещаются в направлении одного из электродов. Так как они не могут пройти через мембрану, то их концентрация у одной из мембран возрастает. Как правило, плотность частиц отличается от плотности среды. Поэтому в месте концентрирования золя плотность системы отличается от среднего значения (обычно с ростом концентрации растет плотность). Концентрированный золь стекает на дно электродиализатора, и в камере возникает циркуляция, продолжающаяся до практически полного удаления частиц.

Коллоидные растворы и, в частности, растворы лиофобных коллоидов, очищенные и стабилизированные могут, несмотря на термодинамическую неустойчивость, существовать неопределенно долгое время. Растворы красного золя золота, приготовленные Фарадеем, до сих пор не подверглись никаким видимым изменениям. Эти данные позволяют считать, что коллоидные системы могут находиться в метастабильном равновесии.

Приложение



Список использованной литературы

1. С. С. Воюцкий, Курс коллоидной химии. Москва, издательство «Химия», 1976г.

2. В. Н. Захарченко, Коллоидная химия. Москва, издательство «Высшая школа», 1989г.

3. Д. А. Фридрихсберг, Курс коллоидной химии. Издательство «Химия», Ленинградское отделение, 1974г.

4. Ю. Г. Фролов, Курс коллоидной химии. Поверхностные явления и дисперсные системы. Москва, издательство «Химия», 1982г.

5. Е. Д. Щукин, А. В. Перцев, Е. А. Амелина, Коллоидная химия. Москва, издательство «Высшая школа», 1992г.

ВВЕДЕНИЕ

Предлагаемое учебное пособие содержит описание 7 лабораторных работ по основным разделам курса коллоидной химии.

Каждая работа состоит из теоретической и практической частей. В первой части изложены основы соответствующего раздела курса коллоидной химии, что позволит студентам сознательно и успешно выполнить лабораторные работы. Далее следует практическая часть, где описаны цель работы, необходимые реактивы и оборудование, методика ее выполнения и обработки экспериментальных результатов, требования к отчету и вопросы для самоконтроля.

Основные цели лабораторных работ по коллоидной химии – привить студентам навыки самостоятельной экспериментальной работы и помочь усвоению основного теоретического материала, рассматриваемого на лекциях.


ЛАБОРАТОРНАЯ РАБОТА №1

ПОЛУЧЕНИЕ ЗОЛЕЙ МЕТОДОМ ЗАМЕНЫ РАСТВОРИТЕЛЯ.

ИЗУЧЕНИЕ ЯВЛЕНИЯ НЕПРАВИЛЬНЫХ РЯДОВ.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Предмет коллоидной химии

Наука о поверхностных явлениях и дисперсных системах называется коллоидной химией .

К поверхностным явлениям относятся процессы, происходящие на поверхности раздела фаз, в межфазном поверхностном слое и возникающие в результате взаимодействия сопряженных фаз. Каждое тело ограничено поверхностью, поэтому объектами коллоидной химии могут быть тела любого размера. Однако поверхностные явления проявляются сильнее всего в телах с высокоразвитой поверхностью, которая придает им новые важные свойства.

Дисперсные системы , рассматриваемые в коллоидной химии, состоят как минимум из двух фаз. Одна из них является сплошной и называется дисперсионной средой. Другая фаза раздроблена и распределена в первой, ее называют дисперсной фазой .

Классификация дисперсных систем

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсной фазы и дисперсионной среды. Три агрегатных состояния (твердое, жидкое и газообразное) позволяют выделить девять типов дисперсных систем (табл. 1.1). Для краткости их условно обозначают дробью, числитель которой указывает на агрегатное состояние дисперсной фазы, а знаменатель – дисперсионной среды. Например, дробью Т/Ж обозначают системы с твердой дисперсной фазой и жидкой дисперсионной средой (твердое в жидкости). Одно из девяти сочетаний Г/Г в обычных условиях не может образовать коллоидной системы, так как газы при любых соотношениях дают истинные растворы. Однако и газы могут проявлять некоторые свойства коллоидных систем благодаря непрерывным флуктуациям плотности и концентрации, вызывающим неоднородности в системе.



Из представленной классификации видно, что все дисперсные системы по кинетическим свойствам дисперсной фазы можно разделить на два класса: свободнодисперсные системы, в которых дисперсная фаза подвижна, и связнодисперсные системы – системы с твердой дисперсионной средой, в которой частицы дисперсной фазы не могут свободно передвигаться. К свободнодисперсным системам относятся золи, к связнодисперсным – гели.

Дисперсные системы классифицируют по дисперсности. Для свободнодисперсных и связнодисперсных систем классификации по дисперсности имеют существенные различия.

Таблица 1.1

Классификация дисперсных систем по агрегатному состоянию фаз

Условное обозначение системы Название системы и примеры
Т/Т Твердые гетерогенные системы: минералы, сплавы, бетон, композиционные материалы
Ж/Т Капиллярные системы: жидкость в пористых телах, адсорбенты в растворах, почвы, грунты
Г/Т Пористые тела: адсорбенты и катализаторы в газах
Т/Ж Суспензии и золи: промышленные суспензии, пульпы, взвеси, пасты, илы
Ж/Ж Эмульсии: природная нефть, кремы, молоко
Г/Ж Газовые эмульсии и пены: флотационные, противопожарные, мыльные пены
Т/Г Аэрозоли (пыли, дымы), порошки
Ж/Г Аэрозоли, туманы, в том числе промышленные, облака
Г/Г Коллоидные системы отсутствуют

Свободнодисперсные системы подразделяются на ультрамикрогетерогенные, размер частиц которых лежит в пределахот 10 –7 до 10 –5 см (от 1 до 100 нм), микрогетерогенные с размером частиц от 10 –5 до 10 –3 см (от 0,1 до 10 мкм) и грубодисперсные с частицами, размер которых превышает 10 ‑3 см.

Ультрамикрогетерогенные системы часто называют истинно коллоидными или просто коллоидными, так как раньше только такие системы считались объектом коллоидной химии. Сейчас термин «коллоидный» стал применяться в широком смысле, равноценном термину «гетерогенно-дисперсный», а за ультрамикрогетерогенными системами осталось название «золи».

Связнодисперсные системы, точнее, пористые тела, классифицируют на микропористые – с размерами пор до 2 нм, переходно-пористые – от 2 до 200 нм и макропористые – выше 200 нм. Системы Т/Т часто удобнее подразделять по дисперсности так же, как и свободнодисперсные системы.

По термодинамической устойчивости дисперсные системы классифицируют на лиофильные (термодинамически устойчивые) и лиофобные (термодинамически неустойчивые) .

Методы получения дисперсных систем

Лиофобные дисперсные системы (термодинамически неравновесные) могут быть получены двумя путями: конденсацией молекул и дроблением более крупных частиц до нужной степени дисперсности.

Конденсационный путь образования дисперсных систем связан с выделением новой фазы из гомогенной системы, находящейся в метастабильном состоянии, например, кристаллизация из пересыщенного раствора, конденсация пересыщенного пара и т. п. Этот процесс протекает в том случае, если химический потенциал вещества в новой (стабильной) фазе меньше, чем в старой (). Однако этот выгодный в конечном счете процесс проходит через стадию, требующую затраты энергии, – стадию образования зародышей новой фазы. Условия для возникновения зародышей новой фазы возникают в метастабильной системе в местах, где образуется местное пересыщение – флуктуации плотности (концентрации) достаточной величины. Радиус равновесного зародыша новой фазы связан со степенью пересыщения известной зависимостью (для жидкой капельки, образующейся в пересыщенном паре):

= (1.1)

где s и – поверхностное натяжение и молярный объем жидкой капельки; p и p – упругости пересыщенного и насыщенного пара соответственно.

Из уравнения видно, что для образования зародышей новой фазы необходимо пересыщение p /p >1. Чем больше степень пересыщения, тем меньше равновесный размер зародышей, тем легче он образуется.

Размеры образующихся частиц зависят от условий проведения процесса конденсации, в принципе – от соотношения между скоростями одновременно идущих процессов: образование зародышей и роста их. Для получения мелких частиц (т. е. частиц дисперсной фазы в будущей дисперсной системе) необходимо значительное преобладание скорости первого процесса над скоростью второго. Практически такие условия создаются либо в весьмав разбавленных растворах реагирующих веществ, либо, наоборот, в достаточно концентрированных растворах, когда образуется сразу много зародышей в процессе кристаллизации, не успевших вырасти до больших размеров. В первом случае образуется золь (коллоидная система), во втором получается мелкокристаллический осадок, который можно в определенных условиях перевести в коллоидный раствор.


Химическая конденсация

Если при химической реакции образуется труднорастворимое соединение, то оно при определенных условиях может быть получено в виде коллоидного раствора. Для этого нужно, во-первых, вести реакцию, разбавленную в растворе, чтобы скорость роста кристаллических частиц была невелика, тогда частицы получаются мелкие (10 –7 ¼10 –9 м) и системе будет обеспечена седиментационная устойчивость; во-вторых, одно из реагирующих веществ взять в избытке, чтобы на поверхности кристалла мог образоваться двойной электрический слой – основной фактор агрегативной устойчивости .

Физическая конденсация

В основе способа лежит конденсация молекул одного вещества – будущей дисперсной фазы, в другом веществе – будущей дисперсионной среды. Практически это может быть осуществлено различными путями, например, пропусканием одного вещества в другое.

Одним из примеров физической конденсации является метод замены растворителя: раствор какого-либо вещества постепенно, при перемешивании, прибавляют к жидкости, в которой это вещество нерастворимо. При этом происходит конденсация молекул и образование коллоидных частиц.

Таким способом можно получить гидрозоли серы, фосфора, канифоли, антрацена и других веществ, вливая их спиртовые растворы в воду. Строение двойного электрического слоя в этих системах недостаточно известно .

Дробление

Механическое дробление осуществляется в различного рода мельницах (для получения коллоидной дисперсности применяют дисперсные мельницы), с помощью ультразвука, в вольтовой дуге (для получения золей металлов) и т. д.

Дробление частиц малых размеров требует большой затраты работы, так как поверхность раздела между фазами в таких системах должна быть очень велика. Образующиеся при дроблении частицы имеют тенденцию самопроизвольного слипания (коагуляции), поэтому дробление следует производить в дисперсной среде в присутствии стабилизаторов – ионов или поверхностно-активных веществ.

Дробление в присутствии поверхностно-активного вещества (ПАВ) требует меньшие затраты работы. Эффект значительного понижения сопротивляемости твердых тел разрушения в результате адсорбции ПАВ был обнаружен Ребиндером П.А. и получил название адсорбционного понижения прочности .

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-1.jpg" alt=">Методы получения дисперсных систем ">

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-2.jpg" alt="> Дисперсные системы получают с необходимым набором физических и химических свойств (состав, агрегатное состояние,"> Дисперсные системы получают с необходимым набором физических и химических свойств (состав, агрегатное состояние, размер, форма, структура, поверхностные свойства). При получении дисперсных систем решают две важные задачи: получение дисперсных частиц нужного размера и формы; стабилизация дисперсных систем, т. е. сохранение размеров дисперсных частиц в течение достаточно длительного времени (особенно актуальна для наночастиц). Методы получения дисперсных систем делятся на: диспергационные, конденсационные и метод пептизации. 2

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-3.jpg" alt="> Диспергационные методы Методы заключаются в измельчении крупных (макроскопических) образцов данного"> Диспергационные методы Методы заключаются в измельчении крупных (макроскопических) образцов данного вещества до частиц дисперсных размеров. При диспергировании химический состав и агрегатное состояние вещества обычно не меняются, меняется размер частиц и их форма. Диспергирование происходит, как правило, не самопроизвольно, а с затратой внешней работы, расходуемой на преодоление межмолекулярных сил при дроблении вещества. Диспергационные методы используют в основном для получения грубодисперсных частиц – от 1 мкм и выше - производство цемента (1 млрд. т в год), измельчении руд полезных ископаемых, получение пищевых продуктов и лекарств и т. д. 3

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-4.jpg" alt="> Механизм уменьшения твердости заключается в том, что добавляемое вещество (понизитель твердости) адсорбируется в"> Механизм уменьшения твердости заключается в том, что добавляемое вещество (понизитель твердости) адсорбируется в местах дефектов кристаллической решетки твердого тела, что приводит к экранированию сил сцепления, действующими между противоположными поверхностями щели (при адсорбции электролитов возникают силы электростатического отталкивания между одноименно заряженными ионами, ПАВы понижают поверхностное натяжение на границе раздела твердое тело – газ, что облегчает деформирование твердого тела). Добавки помогают не только разрушить материал, но и стабилизируют систему в дисперсном состоянии, т. к. , адсорбируясь на поверхности частиц, мешают их обратному слипанию. 4

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-5.jpg" alt="> Конденсационные методы основаны на ассоциации молекул в агрегаты из истинных растворов"> Конденсационные методы основаны на ассоциации молекул в агрегаты из истинных растворов (гомогенных сред). Путем конденсации в зависимости от условий могут быть получены системы любой дисперсности, с частицами любого размера. Эти методы в основном используют для получения дисперсных систем с размерами частиц 10 -8 – 10 -9 м (высокодисперсные и ультрадисперсные), поэтому эти методы широко используют в нанотехнологиях. Конденсационные методы не требуют затраты внешней работы. Появление новой фазы происходит при пересыщении среды, т. е. создании концентраций, превышающих равновесные. 5

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-6.jpg" alt="> Механизм конденсации включает стадии: 1. Стадия зародышеобразования - возникновение зародышей (центров"> Механизм конденсации включает стадии: 1. Стадия зародышеобразования - возникновение зародышей (центров кристаллизации) в пересыщенном растворе; зародыши образуются тем легче, чем больше в растворе центров зародышеобразования (чужеродных частиц). 2. Рост зародышей. 3. Формирование слоя стабилизатора (слоя противоионов), определяющего устойчивость полученной дисперсной системы (для дисперсных систем с жидкой дисперсионной средой). 6

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-7.jpg" alt="> Правила получения дисперсных систем конденсационными методами 1. Чем больше степень"> Правила получения дисперсных систем конденсационными методами 1. Чем больше степень пересыщения, тем меньше радиус зародыша, тем легче он образуется. 2. Для получения мелких частиц необходимо, чтобы скорость образования зародышей была больше скорости их роста. Пересыщение можно вызвать физическим процессом или проведением химической реакции. Различают физические и химические конденсационные методы. 7

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-8.jpg" alt="> Химические конденсационные методы Методы основаны на образовании новой фазы (м. р."> Химические конденсационные методы Методы основаны на образовании новой фазы (м. р. с.) в результате протекания химических реакций. Для получения высокодисперсных золей концентрированный раствор одного компонента добавляют к разбавленному раствору другого компонента при постоянном перемешивании. 8

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-9.jpg" alt="> Примеры химических реакций, используемых для образования коллоидных систем: 1. Реакции"> Примеры химических реакций, используемых для образования коллоидных систем: 1. Реакции восстановления (получение золей Au, Ag, Pt и др. металлов). Восстановление аурата калия формальдегидом. 2 Na. Au. O 2 + 3 HCOH + Na 2 CO 3 = 2 Au + 3 HCOONa +Na. HCO 3 + H 2 O В результате получается золь золота, стабилизированный ауратом калия. Строение мицеллы этого золя можно представить: 2. Реакции обмена (метод, наиболее часто встречающийся на практике). Получение золя иодида серебра. Ag. NO 3 + KJ(изб.) = Ag. J↓ + KNO 3 Строение мицеллы: 9

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-10.jpg" alt="> Метод пептизации Пептизация – метод, основанный на переводе в"> Метод пептизации Пептизация – метод, основанный на переводе в коллоидный раствор осадков, первичные размеры которых уже имеют размеры высокодисперсных систем. Суть метода: свежевыпавший рыхлый осадок переводят в золь путем обработки пептизаторами (растворами электролитов, ПАВов, растворителем). 10

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-11.jpg" alt="> Методы очистки дисперсных систем Полученные золи часто содержат низкомолекулярные примеси (чужеродные"> Методы очистки дисперсных систем Полученные золи часто содержат низкомолекулярные примеси (чужеродные электролиты), способные разрушать коллоидные системы. Полученные золи во многих случаях приходится очищать. Очищают также и дисперсные системы природного происхождения (латексы, нефть, вакцины, сыворотки и т. д.). Для очистки от примесей используют: диализ, электродиализ, ультрафильтрацию. Диализ – извлечение из золей низкомолекулярных веществ чистым растворителем с помощью полупроницаемой перегородки (мембраны), через которую не проходят коллоидные частицы. Электродиализ – диализ, ускоренный применением внешнего электрического поля. Ультрафильтрация – электродиализ под давлением (гемодиализ). 11

Цель работы : ознакомиться с различными методами получения дисперсных систем.

Краткое теоретическое введение.

Способы получения дисперсных систем можно разделить на две группы: методы диспергирования и методы конденсации.

Методы диспергирования основаны на дроблении крупных кусков вещества до требуемой степени дисперсности. Эти методы чаще применяются для получения суспензий и эмульсий Системы с размерами частиц 10 -6 – 10 -7 см получают методами конденсации. Методы конденсации представляют собой объединение молекул или ионов до размеров коллоидных частиц, следствием чего является возникновение границы раздела фаз.

Для получения дисперсных систем любым из этих методов необходимо выполнение следующих условий:

а) нерастворимость или ограниченная растворимость дисперсной фазы в дисперсионной среде;

б) наличие в системе стабилизатора, который должен обеспечить устойчивость взвешенных частиц и приостановить их рост.

Методы диспергирования.

Затрачивая работу против молекулярных сил сцепления, можно различными способами достичь нужной степени дисперсности.

1. Механическое диспергирование.

Способ заключается в энергичном и продолжительном растирании, размалывании или распыливании вещества дисперсной фазы и смешивании его с жидкостью, которая служит дисперсионной средой. Крупные частицы дробят, пользуясь ступками, коллоидными мельницами, краскотёрками. Способом механического диспергирования получают фармацевтические препараты, смазочные материалы, пищевые продукты.

2. Диспергирование ультразвуком.

В основе метода лежит использование ультразвуковых колебаний (более 20000 колебаний в секунду). Диспергирование при помощи ультразвука эффективно лишь для веществ, имеющих небольшую прочность: сера, графит, краски, крахмал, каучук, желатин. Очень легко получаются этим методом эмульсии, например, эмульсии какао, высококачественные кремы и др.

Методы конденсации.

В основе конденсационных методов лежат процессы образования частиц дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Процессы эти могут носить как физический, так и химический характер.

Физическая конденсация.

1. Метод замены растворителя.

Сущность метода заключается в том, что растворитель, в котором вещество растворяется, образуя истинный раствор, заменяется растворителем, в котором это вещество нерастворимо. Например, если спиртовой раствор серы, фосфора или канифоли влить в воду, то раствор становится насыщенным, происходит конденсация, и образуются частицы дисперсной фазы. Это происходит потому, что указанные вещества плохо растворяются в водно-спиртовой смеси.

2. Конденсация при охлаждении пара.

Наиболее наглядный пример конденсации из паров – образование тумана или дыма. Другим примером возникновения коллоидных частиц в результате конденсации пара можно назвать камеру Вильсона, используемую в ядерной физике.

Химическая конденсация.

Получение дисперсных систем методами химической конденсации сводится к образованию молекул нерастворимых веществ в результате химической реакции с последующим укрупнением их до размеров коллоидных частиц. Химические конденсационные методы классифицируются в зависимости от типа химической реакции, лежащей в основе получения золя. К числу реакций, в результате которых при соответствующих условиях могут образовываться вещества в коллоидном состоянии, относятся реакции окисления, восстановления, обмена, гидролиза.

1.Реакции окисления.

Пример окислительной реакции – окисление сероводорода в водной среде:

H 2 S + O 2 = 2S + 2H 2 O

2.Реакции обмена.

Примером такой реакции является образование золя сульфида мышьяка (III):

As 2 O 3 + 3H 2 S = As 2 S 3 + 3H 2 O

3. Реакции гидролиза.

Гидролиз чаще всего используется для получения золей гидроксидов металлов:

FeCl 3 + 3H 2 O = Fe(OH) 3 + 3HCl

Метод пептизации.

Пептизацией называется процесс перехода в коллоидный раствор осадков, образовавшихся при коагуляции. Вызвать пептизацию можно промыванием коагулята растворителем, а также воздействием пептизаторов (электролитов, неэлектролитов, поверхностно-активных веществ, высокомолекулярных соединений). Пептизировать можно только свежеполученные осадки, в которых не прошли явления кристаллизации и частицы не потеряли своей индивидуальности.

Экспериментальная часть.

I. Методы физической конденсации .

Опыт 1 . Получение золя серы методом замены растворителя.

В пробирку наливают 10 мл дистиллированной воды, добавляют 5 капель раствора серы в этаноле и энергично перемешивают содержимое пробирки. Образуется прозрачный опалесцирующий золь. Сера растворима в спирте, но нерастворима в воде. При замене спирта водой молекулы растворённого вещества соединяются в агрегаты коллоидных размеров.

Для наблюдения эффекта Фарадея-Тиндаля пробирку с коллоидным раствором помещают на пути луча света проекционного фонаря. Рассматривают пробирку под углом 90 0 к направлению падающего луча.

Похожие публикации