Условие выпадения осадка. Образование осадков Как понять образуется ли осадок

Создание оптимальных условий осаждения при количественных определениях имеет еще большее значение, чем при качественном анализе, так как всякая потеря вещества здесь совершенно недопустима. Поэтому необходимо остановиться на этом - подробнее.

Прежде всего рассмотрим процесс образования осадков. Этот процесс, несомненно, сложнее, чем можно ожидать на основании уравнения реакции. Так, судя по уравнению

Ba 2+ + SO4 2- - BaSO4

можно думать, что для образования сульфата бария нужно только, чтобы встретились в растворе два иона: Ba2+ и SO2T. Но это, конечно, не так.

Осадок BaSO4 выпадает в виде кристаллов, а из двух ионов кристаллическая решетка построена быть не может. Процесс образования твердой фазы в растворе очень сложен.

Почти всегда наблюдается так называемый индукционный период, который длится от момента смешения растворов реагентов, содержащих реагирующие вещества, до появления видимого осадка. Для различных веществ индукционный период различен; например, при осаждении BaSO* он сравнительно велик, при осаждении AgCl - очень непродолжителен.

Наличие индукционного периода объясняется тем, что образование осадка проходит через ряд стадий. В начале образуются зародышевые, или первичные кристаллы. Для их образования в пространстве должно встретиться в определенном соотношении и при определенном расположении довольно большое число реагирующих ионов. В растворе ионы окружены гидратной оболочкой, при формировании осадка она должна быть разрушена.

Образовавшиеся первичные кристаллы еще не создают поверхности раздела, т. е. образование этих первых частиц твердой фазы и соединение их (агрегация) в более крупные, состоящие из десятков, сотен молекул, еще не вызывает выделения вещества в осадок. Эта стадия формирования осадка соответствует существованию коллоидных систем. Затем первичные кристаллы или их агрегаты образуют более крупные частицы и выпадают в осадок. Этот процесс может идти двумя путями, которые определяют форму осадка, т. е. образование кристаллического или аморфного осадка. В первом случае при прибавлении в раствор порций осаждающего реагента не появляются новые центры кристаллизации, новые агрегаты. Раствор некоторое время остается в пересыщенном состоянии.

При постепенном введений осадителя выделение вещества из пересыщенного раствора происходит преимущественно на поверхности ранее образовавшихся зародышевых кристаллов, которые постепенно растут, так что в конце концов получается кристаллический осадок, состоящий из сравнительно небольшого числа относительно крупных кристаллов.

Так идет осаждение обычно тогда, когда растворимость осадка не слишком мала, особенно если приняты меры к повышению ее путем нагревания или прибавления тех или иных реактивов, например кислот.

Иначе происходит процесс образования аморфных осадков. В этом случае прибавление каждой порции осадителя вызывает быстрое возникновение в жидкости огромного количества мельчайших зародышевых кристаллов, которые растут уже не вследствие отложения на их поверхности соответствующего вещества, а в результате их соединения в более крупные, агрегаты, оседающие под влиянием силы тяжести на дно сосуда. Другими словами, происходит коагуляция первоначально образующегося коллоидного раствора.

Поскольку связь между отдельными зародышевыми кристаллами в получающихся агрегатах сравнительно непрочная, эти агрегаты могут снова распадаться с образованием коллоидного раствора.

Как видно из сказанного, называть эти осадки аморфными не совсем правильно. Правильнее было бы называть их «скрытокри-сталлическими», поскольку они образуются из кристаллов, хотя и мельчайших. Действительно, наличие кристаллической решетки у аморфных осадков может быть в большинстве случаев доказано на опыте путем исследования их с помощью рентгеновских лучей, а иногда и под микроскопом.

Форма выделяющегося осадка зависит от индивидуальных свойств веществ. Например, полярные, сравнительно хорошо рас-, творимые вещества (BaSO4, AgCl, PbSO4 и т. п.) выпадают в кристаллическом состоянии.

Но та или иная форма осадка не только связана с индивидуальными свойствами вещества, но и зависит от условий осаждения. Например, при осаждении из разбавленных водных растворов BaSO4 выпадает в виде кристаллического осадка. Если, однако, осаждать его из смеси воды с 30-60% спирта, сильно понижающего растворимость сульфата бария, то образуется коллоидный раствор или аморфный осадок. С другой стороны, осаждая сульфиды в присутствии пиридина C5H5N, получают" некоторые из них в виде кристаллов. Можно считать экспериментально

доказанным, что любое вещество может быть получено как в виде кристаллического, так и в виде аморфного осадка. Однако образование одной из этих форм обычно связано с созданием таких условий, которые неприемлемы при количественных определениях. Поэтому, в зависимости от индивидуальных свойств образующихся соединений, одни из них получаются при анализе в виде кристаллических, другие - в виде аморфных осадков. Задача аналитика состоит в том, чтобы создать условия, при которых выпадающий осадок был бы возможно более чистым и удобным для дальнейшей обработки, т. е. для отделения фильтрованием и промывания.

В заключение следует сказать, что если свежеосажденный осадок оставить на некоторое время под маточным раствором, то осадок претерпевает ряд изменений, которые называются «старением» осадка.

Оптимальные условия осаждения и старения оказываются весьма различными в случае образования аморфных и кристаллических осадков.

Знание численной величины произведения растворимости позволяет сделать прогноз, будет ли выпадать осадок малорастворимого соединения в результате обменной реакции. Например, для того чтобы при сливании растворов AgNO 3 и K 3 PO 4 выпал осадок Ag 3 PO 4 в результате обменной реакции

3 Ag + + PO 4 3– ® Ag 3 PO 4 ¯

необходимо, чтобы образующийся раствор был перенасыщен ионами серебра и фосфат-ионами. Важно понимать, что ПР – это характеристика, относящаяся к насыщенному раствору, поэтому выпадение осадка произойдёт в том случае, если, в полученном растворе произведение концентраций (ПК) ионов, образующих осадок, больше, чем произведение растворимости (ПР) или, более кратко, условие выпадения осадка: ПК > ПР .

Пример 5.2. Определить будет ли выпадать осадок Ag 3 PO 4 при сливании 1 литра раствора Na 3 PO 4 с концентрацией 5·10 –5 моль/л и 1 литра раствора AgNO 3 с концентрацией 2·10 –3 моль/л. ПР(Ag 3 PO 4) = 1,3·10 –20 .

При решении подобных задач необходимо в первую очередь найти в исходных растворах число моль тех ионов, которые могут образовать осадок (в данном случае – это ионы Ag + и PO 4 3–).

В растворе Na 3 PO 4: n(Na 3 PO 4) = C(Na 3 PO 4)·V раствора (Na 3 PO 4);

n(Na 3 PO 4) = 5·10 –5 моль/л · 1 л = 5·10 –5 моль = n(PO 4 3–).

В растворе AgNO 3: n(AgNO 3) = C(AgNO 3)·V раствора AgNO 3 ;

n(AgNO 3) = 2·10 –3 моль/л · 1 л = 2·10 –3 моль = n(Ag +).

В растворе, образующемся после смешивания, число моль ионов Ag + и PO 4 3– до образования осадка будет таким же, как и в исходных растворах, а объём раствора станет равен 2 литрам:

V общий ≈ V раствора Na 3 PO 4 + V раствора AgNO 3 = 1 л + 1 л = 2 л.

C(Ag +) = n(Ag +) / V общий = 2·10 –3 моль / 2 л = 1·10 –3 моль/л;

C(PO 4 3–) = n(PO 4 3–) / V общий = 5·10 –5 моль / 2 л = 2,5·10 –5 моль/л.

Образование осадка происходит в результате реакции, протекающей по уравнению 3 Ag + + PO 4 3– ® Ag 3 PO 4 ¯, поэтому произведение концентраций (ПК) ионов Ag + и PO 4 3– в полученном растворе следует рассчитывать по уравнению:

ПК = C 3 (Ag +)·C(PO 4 3–) = (1·10 –3) 3 ·2,5·10 –5 = 2,5·10 –14 .


Так как ПК = 2,5·10 –14 > ПР(Ag 3 PO 4) = 1,3·10 –20 , раствор перенасыщен ионами Ag + и·PO 4 3– , следовательно, осадок Ag 3 PO 4 образуется.

Пример 5.3. Определить будет ли выпадать осадок PbCl 2 при сливании 200 мл 0,005 М раствора Pb(NO 3) 2 и 300 мл 0,01М раствора NaCl ПР(PbCl 2) = 1,6·10 –5 .

Расчёт количеств ионов Pb 2+ и Cl – в исходных растворах:

В растворе Pb(NO 3) 2: n(Pb(NO 3) 2) = C(Pb(NO 3) 2)·V раствора (Pb(NO 3) 2);

n(Pb(NO 3) 2) = 0,005 моль/л · 0,2 л = 0,001 моль = n(Pb 2+).

В растворе NaCl: n(NaCl) = C(NaCl)·V раствора NaCl;


n(NaCl) = 0,01 моль/л · 0,3 л = 0,003 моль = n(Cl –).

В растворе, образующемся после смешивания, число моль ионов Pb 2+ и Cl – до образования осадка будет таким же, как и в исходных растворах, а объём раствора станет равен 0,5 литра:

V общий ≈ V раствора Pb(NO 3) 2 + V раствора NaCl = 0,2 л + 0,3 л = 0,5 л.

Концентрации ионов Ag + и PO 4 3– в полученном растворе будут следующими:

C(Pb 2+) = n(Pb 2+) / V общий = 0,001 моль / 0,5 л = 0,002 моль/л = 2·10 –3 моль/л;

C(Cl –) = n(Cl –) / V общий = 0,003 моль / 0,5 л = 0,006 моль/л = 6·10 –3 моль/л.

Образование осадка происходит в результате реакции, протекающей по уравнению Pb 2+ + 2 Cl – ® PbCl 2 ¯, поэтому произведение концентраций (ПК) ионов Pb 2+ и Cl – в полученном растворе следует рассчитывать по уравнению:

ПК = C(Pb 2+)·C 2 (Cl –) = 2×10 –3 ×(6·10 –3) 2 = 7,2·10 –8 .

Так как ПК = 7,2·10 –8 < ПР(PbCl 2) = 1,6·10 –5 , образовавшийся раствор не насыщен ионами Pb 2+ и Cl – , и осадок PbCl 2 не образуется.

В задании № 7 (таблица 5.2) студентам предлагается определить возможность выпадения осадка при смешивании двух растворов электролитов.

Если произведение концентраций ионов (ионное произ­ведение) труднорастворимого электролита меньше его произведения растворимости, раствор является нена­сыщенным. В тот момент, когда ионное произведение достигнет величины ПР данного электролита, раствор станет.насыщенным относительно этого электролита. Если ионное произведение превысит величину ПР, начинается выпадение осадка:

i"

ii =nPA g ci -насыщенный раствор;

: >nP Ag ci -пересыщенный [раствор.

Осадок образуется в том случае, когда произведение концентраций. ионов малорастворимого электролита превысит величину произведения растворимости электро­лита при данной температуре.

Когда ионное произведение станет равным величине ПР, выпадение осадка прекращается. Зная объем и кон­центрацию смешиваемых растворов, можно рассчитать, будет ли выпадать осадок образующейся соли.

Пример. Выпадает ли осадок при смешении равных объемов 0,2 М растворов РЬ(.ЫОз) 2 и NaCl? ПРрьс1 2 =2,4-10~ 4 .

Решение. При смешении объем раствора возрастет вдвое и концентрация каждого иэ> веществ уменьшится вдвое, т. е. станет 0,1 М или 1-Ю -1 моль/л. Таковы же будут концентрации РЬ 2 + и С1~. Следовательно

[РЬ 2 +] [СГ] 2 = 1 10- 1 -(1 Ю- 1) 2 = Ы0-».

Полученная величина превышает ПРрьа 2 (2,4-Ю -4). Поэтому часть соли PbCfo выпадет в осадок.

Из всего сказанного выше мы можем сделать вывод о влиянии различных факторов на образование осадков.

1. Влияние концентрации растворов. Трудиораство-римый электролит с достаточно большой величиной ‘ПР нельзя осадить из разбавленных растворов. Например, осадок РЬСЬ не будет выпадать при смешении равных объемов 0,1 М растворов Pb(N0 3)2 и NaCl.

При смешении равных объемов концентрации каждо­го из веществ станут 0,1: 2 = 0,05 М или 5-10 ~ 2 моль/л. Ионное произведение

[РЬ 2 +] [СГ] 2 = 5- Ю- 2 (5- Ю- 2) 2 = 12,5-10-».

Полученная величина меньше ПР Р ьс1 2 . следовательно выпадения осадка не произойдет.

2. Влияние количества осадителя. Для возможно более полного осаждения употребляют избыток осадителя.
Например, осаждаем соль ВаС0 3:

ВаС1 2 + Na 2 C0 3 = BaC0 3 J + 2NaCl

После прибавления эквивалентного количества Ыа 2 СОз в растворе остаются ионы Ва 2+ , концентрация которых обусловлена величиной ПР. Повышение концентрации ионов СО!», вызванное прибавлением избытка осадителя (Na2C0 3), повлечет за собой соответственное уменьше­ние концентрации ионов Ва 2+ в растворе, т. е. увеличит полноту осаждения этого иона. Однако большого избыт­ка осадителя следует избегать по ряду причин (образо­вание комплексных солей, кислых солей и пр.). На прак­тике обычно употребляют не более чем полуторный из­быток осадителя.

Большое значение имеет степень диссоциации осади­теля. Концентрация ионов, вступающих в реакцию, у слабого электролита во ‘много раз меньше концентрации самого электролита, а следовательно, осаждение мало-диссоциированным реактивом будет гораздо менее пол­ным.

3. Влияние одноименного иона. Растворимость труднорастворимых электролитов понижается в присутствии
других сильных электролитов, имеющих одноименные ионы.

Если к ненасыщенному раствору BaS0 4 прибавлять понемногу раствор Na 2 S04, то ионное произведение, которое ‘было сначала меньше nP Ba so 4 (1,1-Ю -10), постепенно достигнет ПР и превысит его. Начнется выпадение осадка.

Соли с одноименным ионом понижают растворимость солей с довольно большой растворимостью.

4. Солевой эффект. Соли, не имеющие одноименного иона, тоже влияют на растворимость электролитов, но влияни в данном случае противоположное: растворимость электролита повышается. Так, например, раство римость PbS0 4 повышается в присутствии нитратов калия или натрия, а растворимость AgCl повышается в присутствии сульфатов «атрия или калия. Описанное явление называется солевым эффектом.

5. Влияние температуры. Произведение растворимо­сти является постоянной величиной при постоянной тем­пературе. С увеличением температуры величина произ­ведения растворимости возрастает, поэтому осаждение, как правило, проводят из холодных растворов. Осаж­дение из горячих растворов проводят лишь тогда, когда температура благоприятно влияет на характер осадка (переход из аморфного состояния в кристаллическое, предотвращение образования коллоидных растворов и т. д.).

Читайте также:
  1. Алгоритм линейной цифровой фильтрации. Условие физической реализуемости.
  2. Базисные условия поставки – Инкотермс-2000. Условия группы E, F, C, D. Условие FOB и условие CIF.
  3. Билет 1. Циклический алгоритм. Блок-схемы циклов с предусловием, с постусловием и цикла с параметром. Программирование циклического процесса
  4. Важным условием успеха фирмы является надежная система слежения за конкурентами и анализа их действий.
  5. Возрастание и убывание функций, необходимое и достаточное условие.
  6. Вопрос 1. Ядерная реакция. Условием протекания цепной ядерной реакции деления
  7. Вопрос № 13. Окисление углерода в электропечи, механизм и условие удаления пузырька СО.

ОБРАЗОВАНИЕ И РАСТВОРЕНИЕ ОСАДКОВ

В АНАЛИЗЕ

План:

1. Произведение растворимости и растворимость. Условие выпадения осадка

2. Произведение растворимости при неполной диссоциации малорастворимого соединения

3. Факторы, влияющие на полноту осаждения

4. Растворение осадков


Произведение растворимости и растворимость.

Условие выпадения осадка

Гетерогенными называются химические и физико-химические процессы, которые происходят в системах, состоящих из нескольких фаз. Фазы могут быть жидкими, твердыми и газообразными.

Фаза – это отдельные части гетерогенной системы, разграниченные поверхностями раздела.

Мы будем рассмотривать фазовое равновесие жидкость – твердое вещество, как имеющее наибольшее значение для разделения элементов, качественного и количественного определения.

Рассмотрим равновесие в системе малорастворимого сильного электролита А а В в, опустив для простоты заряды ионов:

А а В втв ó aA + bВ

Это равновесие описывается термодинамической константой равновесия:

Активность твердой фазы есть величина практически постоянная, произведение двух констант даст новую константу, которую называют термодинамическим произведением растворимости (ПР) :

В растворе над осадком малорастворимого сильного электролита произведение активностей ионов в степенях соответствующих стехиометрических коэффициентов есть величина постоянная при данных условиях (температура, давление, растворитель).

ПР Т = f (T, р, природы растворителя)

В немецкой литературе ПР обозначается Lp (löslichkeitsprodukt), в английской – Sp (solubility product).

Растворимость S – это способность веществ образовывать гомогенную систему с растворителем.

Растворимость измеряют в моль/л, г/100мл, г/мл и т.д.

Чем меньше растворимость, тем труднее растворяется электролит

BaSO 4 (ПР = 1,05·10 -10) с трудом при кипячении растворяется только в концентрированной серной кислоте,

CaSO 4 (ПР = 9,1·10 -6) довольно хорошо растворим в воде – гипсовая вода

Для малорастворимого сильного электролита АВ, который состоит из ионов одинаковой зарядности, растворимость S – это равновесная концентрация иона А или иона В.



Если обозначить эту концентрацию через x, то

ПР = [A]·[B] = x 2

S = x =

Для осадка электролита, состоящего из ионов разной зарядности А a B b , равновесие в насыщенном растворе

А а В b тв ó aA + bВ

Отсюда [A] = a·S и [B] = b·S

ПР (А а В b)= [A] a ·[B] b = a ·[ b·S] b = a a ·b b ·S a+b . Отсюда

|

Чтобы ответить на вопрос, выпадет ли осадок в данных условиях, необходимо рассчитать величину произведения концентраций ПК и сравнить ее с табличной величиной ПР. При этом возможны 3 случая:

1. ПК< ПР. Такой раствор называется ненасыщенным . Осадок в таком растворе не образуется. Молекулы осадка сразу же распадаются на ионы, т.к. их концентрация ниже равновесной.

2. ПК = ПР. Этот раствор называется насыщенным . В нем наступает подвижное равновесие. Осадок не выпадает.

3. ПК > ПР. Осадок образуется только в пересыщенном растворе. Образование осадка будет продолжаться до наступления равенства ПК = ПР и превращения раствора из пересыщенного в насыщенный. Наступает равновесие и дальнейшее образование осадка прекращается.

Свойство насыщенного раствора сохранять постоянным произведение активностей (концентраций) ионов в соответствующих степенях называют правилом произведения растворимости.

По этому правилу невозможно существование таких растворов, в которых произведение активностей превышало бы табличное значение ПР при данной температуре. Если произведение активностей в соответствующих степенях превышает ПР, то должно произойти образование осадка и концентрация ионов в растворе должна уменьшится до таких значений, которые удовлетворяли бы правилу ПР.

В соответствии с правилом ПР, если концентрация (активность) одного из ионов, входящих в выражение ПР, увеличивается, то концентрация (активность) другого уменьшается.

Это действие одноименного иона лежит в основе методов количественного осаждения и используется в аналитической химии.

Рассчитаем, например, растворимость AgCl (ПР т = 1,78·10 -10). в воде и в 0,01М растворе KCl.

Похожие публикации