Механизм передачи возбуждения в вегетативных ганглиях. Особенности вегетативной нервной системы

Холинергические и адренергические нервные волокна (классификация).
Все преганглионарные нервные волокна (т.е. симпатические и парасимпатические) являются холинэргическими. Следовательно, ацетилхолин, в ганглии вызывает возбуждение постганглионарного нейрона как в узлах симпатической нервной системы, так и парасимпатической нервной системы.
Симпатические и парасимпатические постганглионарные нервные волокна секретирует один из двух медиаторов: ацетилхолин или норадреналин. Симпатические постганглионарные волокна, главным образом, адренэргические, а парасимпатические -холинэргические. Однако некоторые постганглионарные волокна СНС являются холинэргическими. К ним относятся волокна, которые иннервируют потовые железы, m.piloerector, кровеносные сосуды кожи и скелетных мышц.

Основные виды рецепторных субстанций.
До того, как медиатор изменит функцию эффекторной клетки он должен связаться с рецептором, расположенным на мембране клетки. После чего, он либо возбуждает, либо затормаживает клетку. Чаще всего это происходит 2-мя путями:
вызывая изменение проницаемости клеточной мембраны для одного или более ионов;
активируя или инактивируя фермент, соединенный с рецепторным белком.
Холинорецепторы подразделяются на мускариновые (М) и никотиновые (Н)
М-холинорецепторы обнаружены во всех эффекторных клетках, иннервируемых постганглионарными парасимпатическими волокнами, а также в органах, которые активируются холинергическими симпатическими нервными волокнами.
Адренорецепторы . При помощи адреномиметиков было показано, что адренорецепторы подразделяются на 2 основных типа: альфа-адренорецепторы и бета-адренорецепторы.
Норадреналин (НА) и адреналин (А), которые выделяются из симпатических окончаний, оказывают несколько различные эффекты, поскольку связываются преимущественно либо с бета-, либо альфа-адренорецепторами. НА – главным образом, связывается с альфа-адренорецепторами, но также он способен слабо стимулировать и бета-адренорецепторы. С другой стороны, А связывается как с альфа, так и с бета-адренорецепторами. Можно сделать вывод, что эффект А или НА на эффекторный орган будет зависеть от типа рецепторов, которые располагаются на мембране клеток. Если на мембране клетки присутствует только бета-адренорецепторы, то НА на этот орган оказывает менее сильный эффект, чем А.

137. Что такое адренорецепторы и их классификация ?

Адренорецепторы. При помощи адреномиметиков было показано, что дренорецепторы имеют 2 основных типа: альфа-адренорецепторы и бета-адренорецепторы.

Норадреналин (НА) и адреналин (А), которые выделяются из симпатических окончаний, оказывают несколько различные эффекты, поскольку связываются преимущественно либо с бета-, либо альфа-адренорецепторами. НА - главным образом, связывается с альфа-адренорецепторами, но также он способен слабо стимулировать и бета-адренорецепторы. С другой стороны, А связывается как с альфа, так и с бета-адренорецепторами. Можно сделать вывод, что эффект А или НА на эффекторный орган будет зависеть от типа рецепторов, которые располагаются на мембране клеток. Если на мембране клетки присутствует только бета-адренорецепторы, то НА на этот орган оказывает менее сильный эффект, чем А.

138. В чем состоит механизм саморегуляции выделения медиатора в синапсах вегетативной нервной системы ?

В последнее время установлено, что рецепторы располагаются не только на постсинаптической мембране, но и на пресинаптической мембране. Так, например, на постсинаптической мембране адренергических синапсов располагаются, главным образом, альфа1-адренорецепторы, альфа2- на пресинаптической мембране. При накоплении большого количества медиатора (НА) или при наличии высокой концентрации адреналина, продиффун-дировавшего в ткань из крови, они связываются с альфа2 пресинаптическими рецепторами, а их активность препятствует высвобождению медиатора из симпатических терминалей. Таким образом, осуществляется по принципу обратной связи блокада высвобождения медиатора.

Если на пресинаптической мембране располагаются преимущественно бета-адренорецепторы, то их возбуждение облегчает высвобождение медиатора. М-холинорецепторы, расположенные на пресинаптической мембране блокируют высвобождение медиатора.

139. Что такое холинорецепторы и их классификация ?

Холинорецепторы подразделяютсяна мускариновые (М) и никотиновые (Н)

Ацетилхолин активирует оба типа холинорецепторов.

М-холинорецепторы обнаружены во всех эффекторнык клетках, которые иннервируются постганглионарными парасимпатическими волокнами, а также в органах, которые активируются холинергическими симпатическими нервными волокнами.

Н-холинорецепторы расположены на постсинаптической мембране постганглионарных нейронов как в симпатических, так и парасимпатических ганглиях. Н-холинорецепторы также расположены на постсинаптических мембранах нейромоторных единиц (нервномышечных синапсов).

140. Что такое метасимпатическая нервная система ?

После перерезки симпатических и парасимпатических нервов многие органы способны продолжать присущие им функции без изменений. Например, всасывательная и перистальтическая функции кишки, сократительная способность сердца, изолированные полоски матки, мочеточника, желчного пузыря продолжают сохранять свою сократительную активность.

Во многом функциональная автономия этих органов объясняется наличием в ее стенках ганглиозной системы. Эта система обладает собственным автоматизмом, а также имеет свои местные рефлекторные дуги, которые состоят из чувствительного, вставочного и двигательного звена и медиатора. Становится понятным, что в этих органах управление их работой обеспечивается не только симпатическим и парасимпатическим отделами автономной нервной системы, но и рефлекторными дугами, замыкающимися в пределах стенки самих органов.

Эта местная система имеет ряд черт, которые делают ее похожей на автономную нервную систему:

1) общность структурной и функциональной организации

2) общность онто- и филогенеза

3) общность конечных эффектов и т.д.

Это позволило А.Д. Ноздрачеву ввести термин метасимпатической нервной системы.

Однако, метасимпатическая нервная система имеет ряд особенностей:

1)она иннервирует только полые внутренние органы, обладающие собственной моторной активностью;

2)она находится под контролем симпатической и парасимпатической нервной системы;

3) она имеет собственные чувствительные клетки;

4) она более независима от ЦНС, чем симпатический или парасимпатический отделы автономной нервной системы;

5) устранение метасимпатической регуляции приводит к потере координированной ритмической моторной функции;

6) метасимпатическая нервная система имеет собственное медиаторное звено.

141. Укажите медиаторы, высвобождающиеся из преганглионарных и постганглионарных симпатических и парасимпатических нервных волокон .

Симпатические и парасимпатические постганглионарные нервные волокна секретирует один из двух медиаторов: ацетилхолин или норадреналин. Симпатические постганглионарные волокна, главным образом, адренэргические, а парасимпатические -холинэргические. Однако некоторые постганглионарные волокна СНС являются холинэргическими. К ним относятся волокна, которые иннервируют потовые железы, m.piloerector, кровеносные сосуды кожи и скелетных мышц

Норадреналин и его производное адреналин выделяются не только большей частью постганглионарных симпатических нейронов, но также секреторными клетками мозгового слоя надпочечников. Эти клетки, иннервируемые преганглионарными симпатическими волокнами, родственны постганглионарным симпатическим нейронам и сходны с ними по эмбриогенезу.

142. В чем состоит адаптационно-трофическая функция симпатической нервной системы ?

Дж.Ленгли предполагал, что симпатическая н.с. иннервирует только гладкие мышцы и железы. Однако, оказалось, что симпатические импульсы могут оказать влияние и на скелетные мышцы. Если стимуляцией двигательного нерва довести мышцу лягушки до утомления, а затем одновременно раздражать симпатический ствол, то работоспособность утомленной мышцы повышается. Это явление получило название феномена Орбели-Гинецинского. Следовательно, сама по себе симпатическая стимуляция не вызывает сокращения мышцы, но изменяет состояние мышечной ткани, повышает ее восприимчивость к передаваемым по соматическим волокнам импульсам. Это повышение работоспособности мышцы является результатом стимуляции обменных процессов в мышце: увеличивается потребление кислорода, увеличивается содержание АТФ, креатинфосфата, гликогена.

Предполагают 1) что местом действия медиатора, выделяемого из симпатических нервных окончаний является нервно-мышечный синапс 2) выделившийся НА попадает в кровь (т.к. симпатические нервные волокна густо оплетают кровеносные сосуды) с кровью попадает к нервно-мышечному синапсу и действует прямо на мембрану мышечных волокон.

Также было показано, что стимуляция СНС значительно изменяет возбудимость рецепторов и даже функциональные свойства ЦНС. Например, при раздражении симпатических волокон языка возрастает вкусовая чувствительность.

Эти факты были обобщены Л.А.Орбели в теории адаптационно-трофической функции симпатической нервной системы. Согласно этой теории симпатические влияния не сопровождаются непосредственно видимым действием, но значительно изменяют функциональную реактивность или адаптационные свойства тканей.

Таким образом, ясно, что в процессе эволюции СНС превратилась в особый инструмент мобилизации всех ресурсов организма как целого. Следовательно, под контролем СНС в основном находятся процессы, связанные с расходом энергии в организме. В то же время под контролем ПНС находятся процессы, связанные с накоплением энергии.

143. Что такое электромиография ?

Регистрацию биоэлектрических потенциалов можно производить от мышцы

144. Что такое лабильность? Сравнить лабильность нерва, мышцы и синапса .

. Под лабильностью понимают способность ткани отвечать на определённое ритмическое раздражение. Мерой лабильности является максимальное количество импульсов, которое ткань способна воспроизвести в единицу времени без трансформации навязанного ритма

145. Что такое гомеостаз и гомеокине з?

Для внутренней среды организма характерно относительное постоянство состава и физико-химических свойств, т.е. гомеостаз (homoios , греч. – подобный, сходный; + stasis , греч. – состояние). Этот термин предложен в 1929 г. канадским физиологом Уолтером Кэнноном, но сама концепция гомеостаза разработана Клодом Бернаром в 70-х г.г. 19 в., который первым указал, что «постоянство внутренней среды организма – условие свободной жизни». Благодаря этому свойству клетки функционируют в стабильных условиях даже при значительных изменениях внешней среды. Гомеостаз – не статический, а динамический процесс, поскольку в ходе жизнедеятельности непрерывно происходит отклонение его параметров от константного значения. Это включает реакции, возвращающие их к исходному уровню. Совокупность механизмов, поддерживающих гомеостаз, называют гомеокинезом (kinesis, греч. – движение).

Прегангліонарні волокна вегетативной нервной системы принадлежат, как правило, к типу В, имеют тонкую миелиновую оболочку. их диаметр - 2-3,5 мкм (реже 5 мкм). Постганглионарные волокна относятся к типу С, их диаметр составляет не более чем 2 мкм. Большая часть этих волокон не имеет миелиновой оболочки.

Вегетативные, особенно постганглионарные, волокна отличаются малой возбудимостью: для их раздражения требуется большее напряжение электрического тока, чем для раздражения моторных волокон, иннервирующих скелетные мышцы. Нервные импульсы прегангліонарними волокнами распространяются со скоростью от 3 до 18 м1с, а постгангліонарними - от 1 до 3 м1с. К тому же чем тоньше волокно, тем меньше его возбудимость, длительная рефрактерностью, меньше лабильность и низкая скорость проведения импульсов.

ПД симпатических и парасимпатических нервных волокон отличаются большей продолжительностью, чем ПД соматических нервных волокон. В преганглионарных волокнах они сопровождаются длительным слідовим положительным потенциалом, а в постганглионарных - слідовим отрицательным потенциалом, что переходит в длительное (до 300 мс и более) следовую гіперполяризацію.

Медиаторы

в Зависимости от того, какой медиатор выделяется окончаниями аксонов вегетативных нейронов, их распределяют тхолінергічні и адренергические.

Медиатором всех преганглионарных волокон считают ацетилхолин (АХ). Различают два вида холинорецепторов - МИН.

М-холинорецепторы характеризуются тем, что действие АХ на них можно воспроизвести под влиянием мускарина (яд, выделенной из гриба мухомора), а заблокировать-атропином. Эффект медиатора на Н-холинорецепторы воспроизводится никотином. В синапсах ганглиев АХ взаимодействует с Н-холинергическими рецепторами.

Холинергическими являются не только прегангліонарні эфферентные нейроны обоих отделов, но и эфферентные нейроны парасимпатических центров среднего, продолговатого и спинного мозга.

Норадреналин. Адренергические все другие эфферентные нейроны симпатических ганглиев. В окончаниях аксонов и в контактах, образованных этими аксонами с непосмугованими мышечными клетками и другими структурами, выделяется норадреналин (НА).

Есть два основных вида адренорецепторов, с которыми взаимодействует (и гормон мозгового вещества надпочечников - адреналин, А): а - и адренорецепторы. вызывает наибольшее возбуждение р-адренорецепторов миокарда и менее выраженную реакцию неисчерченной бронхов.

В большинстве органов находятся оба вида адренорецепторов, которые могут повлечь разные или одинаковые реакции. В некоторых органах есть лишь один из адренорецепторов. Кровеносные сосуды содержат и а-, и р-адренорецепторы. Соединение симпатического медиатора с-адренорецепторами в артериальной стенке вызывает сужение артериол, а с р-адренорецепторами-их расширение. В кишках также имеющиеся йа - и Р-адренорецепторы: но здесь влияние на те и на другие тормозит сокращение неисчерченной. В миокарде и бронхах нет а-адренорецепторов, здесь НА и А взаимодействуют только с Р-адренорецепторами. Вследствие этого происходит усиление сердечных сокращений и расширение бронхов.

Несмотря на то что адренорецепторы взаимодействуют как с НА, так и с А, чувствительность их к этим лигандам разная. Так, а-адренорецепторы более чувствительны к, А, а адренорецепторы, наоборот, чувствительнее к А. Это означает, что при наличии в органе обоих рецепторов незначительной интенсивности возбуждения симпатического нерва обусловит эффект, присущий взаимодействия НА - а-адренорецептор. Появление в крови небольшого количества гормона А проявится его взаимодействием с Р-адренорецепторами, а значительной концентрации с а-адренорецепторами. В связи с этим, например, при физиологически нормальном невысоком уровне А в крови артерии скелетных мышц расширяются, потому что он взаимодействует с р-адренорецепторами. А в случае высокой его концентрации мышечные сосуды суживаются вследствие преобладания а-адренергической действия.

Особенности синапсов вегетативной нервной системы

Синапсы ганглиев. Синаптическая передача в ганглиях (несмотря на их принадлежность к симпатического или парасимпатического отделов) происходит с помощью медиатора АХ.

Во время взаимодействия АХ с рецептором постсинаптичної мембраны после синаптической задержки в 1,5-2 мс (0,2-0,5 мс в соматических нервах) возникает ЗПСП длительностью 20-50 мс. Для возникновения ПД необходимо достичь предельной амплитуды ЗПСП 8-25 мВ. Продолжительность ПД - 1,5 - 3 мс. Вместе с этим особенностью вегетативных нейронов является резко выраженная следовая гиперполяризация, что приводит к возникновению депрессии вслед за волной возбуждения. Указанные особенности возбуждения вегетативных нейронов объясняют невысокой (не превышает 10-15 имп.1с) частоту импульсов, которые они способны генерировать. Эта частота полностью соответствует длительности ПД и скорости сокращения непосмугованих мышечных клеток. В результате максимальный ритм импульсов, проходящих, к примеру, нервными сосудосуживающими волокнами, не превышает 6-8 имп.1с. Чаще ритм возбуждений преганглионарных волокон, превышающий частоту естественных импульсов ганглионарных нейронов, частично блокируется в синапсах ганглиев, и поэтому постганглионарные волокна возбуждаются в меньшем ритме.

Синапсы постганглионарных волокон.

Особенностью эфферентных синапсов постганглионарных волокон вегетативной нервной системы является разнородность клеток, иннервируемых ими. Это непосмуговані мышечные клетки, сердечная мышца, клетки железистых органов, жировые клетки, нейроны (на периферии вероятный взаимовлияние симпатических и парасимпатических нейронов). На периферии широко варьирует также и плотность иннервации. Особенно это проявляется при иннервации непосмугованих мышечных клеток. В органах со значительной иннервацией, где непосмуговані мышечные клетки лежат отдельно друг от друга (семявыносящих протоков пролив, ресничную мышцу глаза), размещаются типичные нервно-мышечные синапсы. Здесь расстояние между пре - и постсинаптичною мембранами около 20 нм, и функциональная активность клеток находится под полным контролем медиатора нервного волокна.

В большинстве органов постганглионарные симпатические волокна, поступая, делятся на множественные веточки, которые размещаются на значительной (около 80 нм) расстоянии от объекта, что иннервируется (рис. 57). На этих веточках наблюдаются варикозы - расширение (до 250-300 на 1 мм). В расширениях находятся пузырьки (везикулы) с медиатором, подобные имеющимся в типовых синапсах. Здесь происходит высвобождение медиатора, который действует на іннервовану им ткань, под воздействием волны деполяризации, что проходит, и дальнейшего поступления внутрь волокна ионов кальция.

Рис. 57.

На этом заканчивается единство механизмов синаптической передачи с соматическими нервами. Медиатор, поступив в межклеточное пространство, имеет возможность достаточно широко диффундировать. На клетках исполнительных органов нет типовой постсинаптичної мембраны, а рецепторы к медиатору располагаются на них по всей поверхности.

Сюда могут поступать и взаимодействовать с рецепторами различные биологически активные соединения, гормоны. Как следствие, может увеличиваться или уменьшаться чувствительность к медиатору и тем самым модулироваться состояние синаптической передачи. Кроме этого, указанные лиганды (например А) сами могут выполнять роль химического посредника в регуляции функции клеток.

Афферентные пути вегетативной нервной системы

Особенности рефлекторной деятельности каждого отдела вегетативной нервной системы во многом определяются характером ее афферентных путей. Они, как и в соматической нервной системе, начинаются с рецепторов.

Вегетативные центры ЦНС получают информацию о состоянии внутренних органов от інтероцепторів по дендритами биполярных афферентных нейронов, расположенных в межпозвоночных узлах. Кроме того, вегетативная нервная система имеет аференти, что заканчиваются в самом органе, в его нервных сплетениях и узлах, не доходя до описанных выше структур (симпатических ганглиев, нервных центров спинного и головного мозга). Рецепторы имеют немало структур собственно нервной системы (особенно много их в гипоталамусе).

Богатая чувствительная иннервация внутренних органов обеспечивает рефлекторную деятельность нервных центров всех уровней, начиная с периферических вегетативных рефлексов и заканчивая реакциями, осуществляющие вегетативные центры мозга. Причем импульсы, поступающие по этим путям в ЦНС, вызывают рефлекторные ответы не только вегетативной, но и соматической нервной системы. Они могут включать также сложные поведенческие реакции организма. Информация о состоянии внутренних органов поступает в ЦНС, необходимая для возникновения различных мотиваций (жажды, голода, половых и др.; см. разд. 5), в результате которых формируются сложные поведенческие реакции организма. Причина таких реакций - изменения не окружающей, а внутренней среде. И направлены они на удовлетворение той или иной биологической потребности организма.

Независимо от источника сигнализации, афферентные импульсы активируют связанные с ними нейроны. Активность этих нейронов определяется:

а) интенсивностью раздражителя;

б) наличием коллатералей вич интернейронов соответствующего отдела вегетативной нервной системы (к тому же, начиная с уровня спинного мозга, возможна взаимная суммация вегетативных и симпатических афферентных сигналов);

в) регулирующими импульсами высших нервных центров.

Функциональная характеристика ганглиев

Вегетативные ганглии играют важную роль в распределении и распространении нервных воздействий, проходящих через них. Это основывается на двух структурных особенностях ганглиев. Во-первых, количество нервных клеток в них в несколько раз (в верхнем шейном узле - в 10 раз, в війчастому узле-в 2 раза) превышает количество преганглионарных волокон, поступающих к ганглия. Во-вторых, каждое из пресинаптических волокон значительно ветвится, образуя синапсы на многих клетках ганглия. Поэтому нервные импульсы, поступающие прегангліонарним волокном, могут влиять на большое число ганглионарных нейронов и, следовательно, на еще большее число мышечных и железистых клеток органа, иннервирующие (явление дивергенции). Таким образом достигается расширение зоны влияния преганглионарных волокон.

в то же Время на каждом гангліонарному нейроне имеются синапсы, образованные многими прегангліонарними волокнами. В результате создаются условия для конвергенции-пространственной суммации нервных импульсов. В ее проявлении принимают участие и соматические нервы.

Одностороннее проведение нервных импульсов в межнейронных синапсах, перекрытие зон влияния отдельных преганглионарных волокон, входящих в узел, наличие временной и пространственной суммации и окклюзии показывают, что нейроны и синапсы ганглиев вегетативной нервной системы имеют такие же свойства, что и нейроны и синапсы ЦНС.

В интрамуральных ганглиях парасимпатической нервной системы дивергенция выражена менее ярко, чем у симпатичной, здесь часто встречаются прямые контакты прегангліонарного с одним постгангл іонарним нейроном.

Синапсы вегетативной нервной системы имеют в целом такое же строение, что и центральные.

Передача нервных импульсов с преганглионарных волокон на нейроны всех вегетативных ганглиев осуществляется Н-холинергическими синапсами, т.е. синапсами, на постсинаптической мембране которых расположены никотинчувствительные холинорецепторы.

Постганглионарные холинергические волокна образуют на клетках исполнительных органов М-холинергические синапсы. Их постсинаптическая мембрана содержит мускаринчувствительные рецепторы (блокатор - атропин).

И в тех, и в других синапсах передача возбуждения осуществляется ацетилхолином. М-холинергические синапсы оказывают возбуждающее влияние на гладкие мышцы пищеварительного канала, мочевыводящей системы (кроме сфинктеров), железы ЖКТ. Однако они уменьшают возбудимость, проводимость и сократимость сердечной мышцы и вызывают расслабление некоторых сосудов головы и таза.

Постганглионарные синаптические волокна образуют 2 типа адренергических синапсов на эффекторах: альфа-адренегрические и бета-адренергические. Постсинаптическая мембрана первых содержит бета1- и бета2- адренорецепторы.

постгаплионарными волокнами иннервируются клетки подкожно-жировой клетчатки и печени и, возможно, канальцы почек и лимфатические образования (например, вилочковая железа, селезенка, пейеро-вы бляшки и лимфатические узлы). Постганглионарные симпатические волокна, иннервирующие потовые железы и сосуды скелетных мышц, выделяют ацетилхолин, являются холинергическими.

Медиаторы:

Норадреналин - нейромедиатор адренергической системы. Другая важная составляющая ВНС - адренергическая система. До сих пор неизвестно, какой нейромедиатор использовался в этой системе первоначально - эпинефрин или норэпинефрин. Сейчас известно, что за исключением надпочечников, которые секретируют эпинефрин (адреналин), нейроме-диатором в адренергической системе является норэпинефрин. Ацетилхолин - ганглионарный медиатор для холинергической и адренергической систем. Эфферентные нервы и для холинергической, и для адренергической систем происходят из соответствующих частей ствола мозга и спинного мозга. Эфферентные нервы образуют синапс в ганглии, расположенном вне органа.

32. Холинэргические и адренэргические нервы. Биохимический механизм передачи возбуждения в холинэргических и адренэргических нервах. М- и Н-холинореактивные системы.

Симпатические и парасимпатические нервные волокна секретируют в основном один из двух синаптических медиаторов - ацетилхолин или норадреналин. Волокна, секретирующие ацетилхолин, называют холинергическими, волокна, секретирующие норадреналин, называют адренергическими (термин, происходящий от адреналина, - альтернатива эпинефрину).

Все преганглионарные нейроны (и симпатической, и парасимпатической нервных систем) являются холинергическими. Ацетилхолин или подобные ему вещества при действии их на ганглии возбуждают симпатические и парасимпатические постганглионарные нейроны. Все или почти все постганглионарные нейроны парасимпатической системы - также холинергические.

С другой стороны, большинство постганглионарных симпатических нейронов являются адренергическими. Однако постганглионарные симпатические нервные волокна, идущие к потовым железам, мышцам, поднимающим волосы, и к очень небольшому числу кровеносных сосудов, являются холинергическими.

Холинергические механизмы нервной системы - это вещества, которые обеспечивают передачу возбуждения в холинергическом синапсе.

Медиатор ацетилхолин (эфир холина и уксусной кислоты) образуется из аминокислоты холина и ацетил-СоА на пресинаптическом окончании нервноего волокна. Образующийся медиатор поступает в везикулы, а частично может остаться в свободном состоянии. При возбуждении медиатор выделяется из везикул. Процесс выделения медиатора С-зависим. Для нормальной работы синапса необходим запас медиатора, поэтому на пресинаптической мембране идёт ресинтез ацетилхолина. Для этого аминокислота холин выделяется из постсинаптической мембраны, частично из синаптической щели (возврат медиатора). Для образования медиатора необходима энергия метехондрий.

Фермент, способствующий синтезу ацетилхолина - ацетилхолинтрансфераза или холинацетилаза. Этот фермент образуется в теле нейрона и поступает в нервные окончания. Для нормального образования медиатора необходима целостность тела нейрона. Изолированное нервное волокно не может долго выделять медиатор.

Фермент, расщепляющий ацетилхолин - ацетилхолинэстераза. Этот фермент обладает высоким сродстворм к ацетилхолину, который находится в виде комплекса и Х-рецептором. Различают истинную ацетилхолинэстеразу (находится в синапсах и эритроцитах), которая расщепляет ацетилхолин в физиологических концентрациях и ложную ацетилхолинэстеразу (в жидкостях организма - слюне, плазме и т. д.), которая расщепляет ацетилхолин в высоких концентрациях и разрушает еще и различные производные ацетилхолина (курарекодовые препараты). Освобождённый холин с помощью переносчиков поступает на пресимпатическую мембрану, а уксусная кислота и глюкоза поступают в кровь через межтканевую жидкость.



Адренергические механизмы нервной системы осуществляются за счет норадреналина - составляет 90 % и других катехоламинов - 10 %.

Предшественник норадреналина - изопропилнораденалин, дофамин. Для синтеза необходимы аминокислоты тиронин, фениламин, которые поступают с постсинапсической мембраны и из тела нейрона. Любые структуры могут образовывать норадреналин, но 95 % его образуется на пресимпатической мембране.

Ферменты синтеза норадреналина - трансаминазы.

Ферменты разрушения ноадреналина - группа катехоламинтрансфераз, часто моноаминоуксусная кислота и моноаминооксидант.

Адренорецепторы - белковые молекулы, обладающие сродством к норадреналину и его производным. Эти рецепторы - наружная субъединица крайней белковой молекулы, внутренняя субъединица может быть ферментом (адемилат- и гуанилатциклазы). При взаимодействии с рецептором изменяется структура молекулы белка и, как следствие, изменяется активность фермента.

Существует 2 вида холинорецепторов - М и Н.

М-холинорецепторы - чувствительны к мускалину (яду мухомора) - расположены в основном во внутренних органах, эндокринных железах, сердце, сосудах, дыхательных путях, желудочнокишечном тракте. Они обладают медленным, но продолжительным действием, могут суммировать возбуждение. Существуют 2 вида М-холинорецепторов: одна - во внутренних органах, другая - в эндокринных железах. При возбуждении М-холинорецепторв происходит торможение сердечной деятельности, раширение сосудов, активация деятельности желудочно-кишечного тракта, изменяется секреция некоторых эндокринных желёз.

Н-холинорецепторы - чувствительны к никотину. Располагаются в вегетативных ганглиях, мионевральных синапсах, в хлорофильной ткани надпочечников. Эти рецепторы обладают быстрым, кратковременным действием, не могут суммировать возбуждение. Существует 3 разновидности. За счёт наличия разновидностей рецепторы могут блокироваться различными веществами. В центральной нервной системе больше Н-холинорецепторов. М-холинорецепторы преобладают в области ствола мозга, подкорковых узлах, лимбической системе, ретикулярной формации, гипоталамусе.

33. Химическая передача возбуждения в ганглиях симпатической нервной системы. Ацетинхолин как передатчик возбуждения в ганглиях. Роль холиностеразы. Ганглиоблокирующие вещества и их роль в лекарственной терапии.

Основным же способом передачи возбуждения в ав­тономной нервной системе является химический. Он осуществляется по определенным закономерностям, среди которых выделяют два принципа. Первый (принцип Дейла) заключается в том, что нейрон со всеми отростками выделяет один медиатор. Как стало теперь известно, наряду с основным в этом нейроне могут присутствовать также другие передатчики и участвующие в их синтезе вещества. Согласно второму принципу, действие каждого медиатора на нейрон или эффектор зависит от природы рецептора постсинаптической мембраны.В автономной нервной системе насчитывают более десяти видов нервных клеток, которые продуцируют в качестве основных разные медиаторы: ацетилхолин, норадреналин, серотонин и другие био­генные амины, аминокислоты, АТФ.Каждый из медиаторов выполняет передаточную функцию, как правило, в определенных звеньях дуги автономного рефлекса.Так, ацетилхолин выделяется в окончаниях всех преганглионарных симпатических и парасимпатических нейронов, а также большинства постганглионарных парасимпатических оконча­ний. Кроме того, часть постганглионарных симпатических волокон, иннервирующих потовые железы и, по-видимому, вазодилататоры скелетных мышц, также осуществляют передачу с помощью ацетилхолина.Медиатор, освобождающийся в пресинаптических терминалах под влиянием приходящих нервных импульсов, взаимодействует со специфическим белком-рецептором постсинаптической мембраны и об­разует с ним комплексное соединение. Белок, с которым взаимо­действует ацетилхолин, носит название холинорецептора, адрена­лин или норадреналин - адренорецептора и т. д. Местом локализации рецепторов различных медиаторов является не только постсинаптическая мембрана. Обнаружено существование и специ­альных пресинаптических рецепторов, которые участвуют в меха­низме обратной связи регуляции медиаторного процесса в синапсе.Ацетилхолинэстераза играет ключевую роль в процессах нейрогуморальной и синаптической передачи: в холинэргических синапсах катализирует гидролиз ацетилхолина, и, как следствие, прекращает влияние данного медиатора на холинорецептор, отвечающий за возбуждение нервного волокна. При ингибировании АХЭ освобождение рецепторов от ацетилхолина происходит очень медленно (только посредством диффузии), и передача нервных импульсов заблокирована на уровне (нейротрансмиттер <-> постсинаптическая мембрана). Это вызывает дезорганизацию процессов организма, а при тяжелых отравлениях (в частности фосфорорганическими боевыми отравляющими веществами) может привести к летальному исходу.Ганглиоблокирующие вещества обладают способностью блокировать н-холинорецепторы вегетативных нервных узлов и в связи с этим тормозить передачу нервного возбуждения с преганглионарных на постганглионарные волокна вегетативных нервов. Современные ганглиоблокаторы угнетают или полностью выключают проведение нервного импульса в симпатических и парасимпатических узлах, синокаротидном клубочке и хромафинной ткани надпочечников, что приводит к временной искусственной денервации внутренних органов и изменению их функции. Однако разные препараты могут обладать различной активностью по отношению к разным группам ганглиев. Первым ганглиоблокатором, получившим практическое применение в медицине в начале 50-х годов, был гексаметоний (гексоний). Затем был получен целый ряд других ганглиоблокаторов; некоторые из них, подобно гексаметонию, являются четвертичными аммониевыми соединениями, а часть является третичными аминами.

34. Значение вегетативной нервной системы в деятельности целого организма. Адаптационно-трофическое значение вегетативной нервной системы организма.

Главной функцией автономной нервной системы является регулирование процессов жизнедеятельности органов тела, согласование и приспособление их работы к общим нуждам и потребностям организма в условиях окружающей среды. Выражением этой фун­кции служит регуляция метаболизма, возбудимости и других сторон деятельности органов и самой ЦНС. В этом случае управление работой тканей, органов и систем осуществляется посредством двух типов влияний - пусковых и корригирующих.Влияние автономной нервной системы на висцеральные функ­ции. Все структуры и системы организма иннервируются волокнами автономной нервной системы. Многие из них имеют двойную, а полые висцеральные органы даже тройную (симпатическую, пара­симпатическую и метасимпатическую) иннервацию. Изучение роли каждой из них обычно осуществляют с помощью электрического раздражения, хирургического или фармакологического выключения, химической стимуляции и т. д.Основная функциональная роль метасимпатической части авто­номной нервной системы состоит в осуществлении механизмов, обес­печивающих гомеостаз - относительное динамическое постоянство внутренней среды и устойчивость основных физиологических фун­кций. В отличие от нее симпатическая часть автономной нервной системы рассматривается как система тревоги, мобилизации защит­ных сил и ресурсов для активного взаимодействия с факторами среды. Задачу восстановления и поддержания этого постоянства, нарушенного в результате возбуждения симпатической части авто­номной нервной системы, берет на себя метасимпатическая и отчасти парасимпатическая части автономной нервной системы.Адаптационно-трофическая функция симпатической части ав­тономной нервной системы. Эффекты адаптационно-трофи­ческого влияния, полученные сначала при раздражении симпати­ческих волокон, полностью воспроизводятся раздражением гипоталамической области. Следовательно, в целом организме адаптаци­онно-трофические влияния могут осуществляться рефлекторно (по­средством стимуляции рецепторов чувствительных путей), а также и путем непосредственного раздражения гипоталамических центров, нейроны которых могут возбуждаться образуемыми местно или при­носимыми с кровью биологически активными веществами. Таким образом, адаптационно-трофическое влияние симпатической части автономной нервной системы, не являясь пусковым, модулирует функциональную активность того или иного органа - рецепцию, проведение возбуждения, медиацию, сокращение, секрецию и др. и приспосабливает его к потребностям организма.

35. Участие вегетативной нервной системы в формировании целостных поведенческих реакций.

Благодаря нейронам, вегетативная нервная система участвует в осуществлении рефлекторных реакций, которые называются вегетативными рефлексами. Вегетативные рефлексы вызываются раздражением экстерорецепторов и интерорецепторов. При вегетативных рефлексах импульсы передаются из ЦНС к периферическим органам по симпатическим или парасимпатическим нервам.Рефлексы, замыкающиеся на уровне ганглиев вегетативной нервной системы, называются рефлексами метасимпатического отдела ВНС. Ганглии вегетативной системы являются вытесненными на периферию рефлекторными центрами. В ганглиях вегетативной системы имеются все нейроны, необходимые для выполнения рефлекторного переключения (афферентные, эфферентные, вставочные и тормозные).«Местные» периферические рефлексы, осуществляются интрамуральными вегетативными ганглиями, и регулируют работу сердца, перильстатику кишечника, осуществляют взаимосвязь отделов желудка и некоторых других органов. Нейроны, которые входят в эти ганглии, их отростки, синапсы и окончания формируют внутриорганные рефлекторные структуры, регулирующие работу органа внутриорганными периферическими рефлексами. В число структур метасимпатической нервной системы входят пейсмекеры, которые обладают способностью к самопроизвольной деполяризации, которая обеспечивает ритм сокращения гладкомышечных клеток органа.Импульсы, которые приходят к органу по преганглионарным волокнам парасимпатических нервов, взаимодействуют с импульсами, которые осуществляют процессы внутриорганной рефлекторной регуляции. Ответная реакция органа определяется результатом указанного взаимодействия. По этой причине эффект раздражения преганглионарных волокон не однозначен. На органы, в которых находятся интрамуральные рефлекторные механизмы регуляции, постганглионарные парасимпатические волокна оказывают (в зависимости от функционального состояния иннервируемого органа) как возбуждающее, так и тормозящее действие. Они способны включать или выключать, усиливать или ослаблять ту или иную функцию органа, таким образом, осуществляя многообразные регуляторные влияния, необходимые для поддержания нормальной текущей деятельности.

Пре­ганглионарные волокна вегетативной нервной системы относятся к группе В, имеют диаметр 2-3,5 мкм и покрыты тонкой миелиновой оболочкой. Постганглионарные волокна относятся к груп­пе С, имеют диаметр до 2 мкм, большая часть их не имеет миелиновой оболочки. Эти волокна обладают более низкой возбудимо­стью по сравнению с соматической нервной системой. Чем тоньше нервное волокно, тем меньше его возбудимость, тем больше рео­база, хронаксия, рефрактерность, величина мембранного потен­циала, тем меньше скорость проведения возбуждения. ПД вегета­тивных волокон отличается большой длительностью.

Парасимпатическая нервная система обладает более высокой возбудимостью по сравнению с симпатической, более коротким ла­тентным периодом.

Электронно-микроскопическими исследованиями установлено наличие синаптических контактов между вегетативными волокна­ми и волокнами иннервируемой ими гладкой мускулатуры. Нерв­ное волокно заканчивается в углублении на поверхности мышеч­ного волокна.

Строение синапсов вегетативной нервной системы и механизм передачи в них импульсов в основном такие же, как и в концевой пластинке.

Передача возбуждения в синапсах вегетативной нервной сис­темы осуществляется с помощью медиаторов: медиатор симпати­ческой нервной системы - адреналин, а парасимпатической и постганглионарных волокон симпатической нервной системы, иннервирующих сосуды потовых желез,- ацетилхолин.

Передача импульсов в ганглиях вегетативной нервной систе­мы сложна и разнообразна. Преганглионарные волокна сильно ветвятся в вегетативных ганглиях и образуют многочисленные синапсы на клетках ганглия. Эти синапсы обладают теми же свойствами, как и центральные синапсы: в них осуществляется одностороннее проведение возбуждения, пространственная и по­следовательная суммация и др. Для них характерна большая дли­тельность ВПСП и фазы гиперполяризации ПД. Благодаря дли­тельной гиперполяризации в ганглиях вегетативной нервной сис­темы возникают импульсы с малой частотой. Вследствие этого со­кращение гладких мышц возникает медленно и длится долго.

Похожие публикации